Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Med Genet ; 61(3): 289-293, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37833060

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) impact both the development and functioning of the brain and exhibit clinical and genetic variability. RAP and RAB proteins, belonging to the RAS superfamily, are identified as established contributors to NDDs. However, the involvement of SGSM (small G protein signalling modulator), another member of the RAS family, in NDDs has not been previously documented. METHODS: Proband-only or trio exome sequencing was performed on DNA samples obtained from affected individuals and available family members. The variant prioritisation process focused on identifying rare deleterious variants. International collaboration aided in the identification of additional affected individuals. RESULTS: We identified 13 patients from 8 families of Ashkenazi Jewish origin who all carried the same homozygous frameshift variant in SGSM3 gene. The variant was predicted to cause a loss of function, potentially leading to impaired protein structure or function. The variant co-segregated with the disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. CONCLUSIONS: An Ashkenazi Jewish homozygous founder variant in SGSM3 was discovered in individuals with NDDs and short stature. This finding establishes a connection between another member of the RAS family and NDDs. Additional research is needed to uncover the specific molecular mechanisms by which SGSM3 influences neurodevelopmental processes and the regulation of growth.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Judeus/genética , Homozigoto , Síndrome
2.
Brain ; 145(3): 872-878, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34788402

RESUMO

Pathogenic variants in SOD1, encoding superoxide dismutase 1, are responsible for about 20% of all familial amyotrophic lateral sclerosis cases, through a gain-of-function mechanism. Recently, two reports showed that a specific homozygous SOD1 loss-of-function variant is associated with an infantile progressive motor-neurological syndrome. Exome sequencing followed by molecular studies, including cDNA analysis, SOD1 protein levels and enzymatic activity, and plasma neurofilament light chain levels, were undertaken in an infant with severe global developmental delay, axial hypotonia and limb spasticity. We identified a homozygous 3-bp in-frame deletion in SOD1. cDNA analysis predicted the loss of a single valine residue from a tandem pair (p.Val119/Val120) in the wild-type protein, yet expression levels and splicing were preserved. Analysis of SOD1 activity and protein levels in erythrocyte lysates showed essentially no enzymatic activity and undetectable SOD1 protein in the child, whereas the parents had ∼50% protein expression and activity relative to controls. Neurofilament light chain levels in plasma were elevated, implying ongoing axonal injury and neurodegeneration. Thus, we provide confirmatory evidence of a second biallelic variant in an infant with a severe neurological syndrome and suggest that the in-frame deletion causes instability and subsequent degeneration of SOD1. We highlight the importance of the valine residues at positions V119-120, and suggest possible implications for future therapeutics research.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , DNA Complementar , Humanos , Lactente , Mutação/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Síndrome , Valina/genética
3.
Am J Med Genet A ; 188(9): 2555-2559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35775617

RESUMO

Infantile Krabbe disease (OMIM 245200) is a severe, fatal autosomal recessive neurodegenerative disorder that is relatively frequent in two Muslims villages within Jerusalem. After the characterization of the founder mutation, a population carrier screening for Krabbe disease became a component of the Israeli program for the detection and the prevention of birth defects. Between 2010 and 2018, 3366 individuals were tested and among them 247 carriers for Krabbe disease were identified (7.3%). Most of the 21 carrier couples identified that had pregnancies after being informed that they were at risk used preventive measures including termination of pregnancies of affected fetuses. During the study period, eight children affected with Krabbe disease were born in the villages, four to couples not detected though the program. Twenty years after the beginning of the carrier screening program, Krabbe disease remained relatively frequent in the villages. The establishment of a genetic clinic in the villages may allow to improve the carrier screening program while giving individual counseling for the risk to the other genetic diseases existing in the villages.


Assuntos
Leucodistrofia de Células Globoides , Criança , Feminino , Triagem de Portadores Genéticos , Humanos , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/epidemiologia , Leucodistrofia de Células Globoides/genética , Programas de Rastreamento , Gravidez
4.
Genome Med ; 13(1): 55, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845882

RESUMO

BACKGROUND: ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane-anchored protein involved in diverse processes including mitochondrial dynamics, mitochondrial DNA organization, and cholesterol metabolism. Biallelic deletions (null), recessive missense variants (hypomorph), and heterozygous missense variants or duplications (antimorph) in ATAD3A lead to neurological syndromes in humans. METHODS: To expand the mutational spectrum of ATAD3A variants and to provide functional interpretation of missense alleles in trans to deletion alleles, we performed exome sequencing for identification of single nucleotide variants (SNVs) and copy number variants (CNVs) in ATAD3A in individuals with neurological and mitochondrial phenotypes. A Drosophila Atad3a Gal4 knockin-null allele was generated using CRISPR-Cas9 genome editing technology to aid the interpretation of variants. RESULTS: We report 13 individuals from 8 unrelated families with biallelic ATAD3A variants. The variants included four missense variants inherited in trans to loss-of-function alleles (p.(Leu77Val), p.(Phe50Leu), p.(Arg170Trp), p.(Gly236Val)), a homozygous missense variant p.(Arg327Pro), and a heterozygous non-frameshift indel p.(Lys568del). Affected individuals exhibited findings previously associated with ATAD3A pathogenic variation, including developmental delay, hypotonia, congenital cataracts, hypertrophic cardiomyopathy, and cerebellar atrophy. Drosophila studies indicated that Phe50Leu, Gly236Val, Arg327Pro, and Lys568del are severe loss-of-function alleles leading to early developmental lethality. Further, we showed that Phe50Leu, Gly236Val, and Arg327Pro cause neurogenesis defects. On the contrary, Leu77Val and Arg170Trp are partial loss-of-function alleles that cause progressive locomotion defects and whose expression leads to an increase in autophagy and mitophagy in adult muscles. CONCLUSION: Our findings expand the allelic spectrum of ATAD3A variants and exemplify the use of a functional assay in Drosophila to aid variant interpretation.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Variação Genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Adolescente , Alelos , Sequência de Aminoácidos , Animais , Autofagia/genética , Simulação por Computador , Drosophila/ultraestrutura , Feminino , Humanos , Lactente , Recém-Nascido , Locomoção , Masculino , Mitofagia/genética , Mutação de Sentido Incorreto/genética , Neurogênese/genética , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
5.
Oncogene ; 38(17): 3103-3118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622338

RESUMO

The cancer stem cell (CSC) model suggests that a subpopulation of cells within the tumor, the CSCs, is responsible for cancer relapse and metastasis formation. CSCs hold unique characteristics, such as self-renewal, differentiation abilities, and resistance to chemotherapy, raising the need for discovering drugs that target CSCs. Previously we have found that the antihypertensive drug spironolactone impairs DNA damage response in cancer cells. Here we show that spironolactone, apart from inhibiting cancerous cell growth, is also highly toxic to CSCs. Notably, we demonstrate that CSCs have high basal levels of DNA double-strand breaks (DSBs). Mechanistically, we reveal that spironolactone does not damage the DNA but impairs DSB repair and induces apoptosis in cancer cells and CSCs while sparing healthy cells. In vivo, spironolactone treatment reduced the size and CSC content of tumors. Overall, we suggest spironolactone as an anticancer reagent, toxic to both cancer cells and, particularly to, CSCs.


Assuntos
Antineoplásicos/administração & dosagem , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Espironolactona/administração & dosagem , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Espironolactona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA