Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 16(9): e1903788, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829522

RESUMO

The interaction of a sound or ultrasound wave with an elastic object, such as a microbubble, can give rise to a steady-state microstreaming flow in its surrounding liquid. Many microfluidic strategies for cell and particle manipulation, and analyte mixing, are based on this type of flow. In addition, there are reports that acoustic streaming can be generated in biological systems, for instance, in a mammalian inner ear. Here, new observations are reported that individual cells are able to induce microstreaming flow, when they are excited by controlled acoustic waves in vitro. Single adherent cells are exposed to an acoustic field inside a microfluidic device. The cell-induced microstreaming is then investigated by monitoring flow tracers around the cell, while the structure and extracellular environment of the cell are altered using different chemicals. The observations suggest that the maximum streaming flow induced by an MDA-MB-231 breast cancer cell can reach velocities on the order of mm s-1 , and this maximum velocity is primarily governed by the overall cell stiffness. Therefore, such cell-induced microstreaming measurements, including flow pattern and velocity magnitude, may be used as label-free proxies of cellular mechanical properties, such as stiffness.


Assuntos
Acústica , Técnicas Analíticas Microfluídicas , Acústica/instrumentação , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Dispositivos Lab-On-A-Chip , Camundongos , Microbolhas , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única
3.
Adv Mater ; 36(2): e2305964, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37671420

RESUMO

The fibrous network of an extracellular matrix (ECM) possesses mechanical properties that convey critical biological functions in cell mechanotransduction. Engineered fibrous hydrogels show promise in emulating key aspects of ECM structure and functions. However, varying hydrogel mechanics without changing its architecture remains a challenge. A composite fibrous hydrogel is developed to vary gel stiffness without affecting its structure by controlling intrafibrillar crosslinking. The hydrogel is formed from aldehyde-modified cellulose nanocrystals and gelatin methacryloyl that provide the capability of intrafibrillar photocrosslinking. By varying the degree of gelatin functionalization with methacryloyl groups and/or photoirradiation time, the hydrogel's elastic modulus is changed by more than an order of magnitude, while preserving the same fiber diameter and pore size. The hydrogel is used to seed primary mouse lung fibroblasts and test the role of ECM stiffness on fibroblast contraction and activation. Increasing hydrogel stiffness by stronger intrafibrillar crosslinking results in enhanced fibroblast activation and increased fibroblast contraction force, yet at a reduced contraction speed. The developed approach enables the fabrication of biomimetic hydrogels with decoupled structural and mechanical properties, facilitating studies of ECM mechanics on tissue development and disease progression.


Assuntos
Hidrogéis , Mecanotransdução Celular , Animais , Camundongos , Hidrogéis/química , Matriz Extracelular , Fibroblastos , Módulo de Elasticidade
4.
Pharmacol Ther ; 250: 108528, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708995

RESUMO

The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.


Assuntos
Cicatriz , Mecanotransdução Celular , Humanos , Mecanotransdução Celular/fisiologia , Fibroblastos , Fibrose , Adesão Celular , Matriz Extracelular/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-36123034

RESUMO

Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.


Assuntos
Cicatriz , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Cicatriz/metabolismo , Cicatriz/patologia , Cicatrização/fisiologia , Colágeno/metabolismo , Fibrose , Matriz Extracelular/metabolismo , Diferenciação Celular/fisiologia
6.
Acta Biomater ; 155: 182-198, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435437

RESUMO

The structural and functional properties of collagen are modulated by the presence of intramolecular and intermolecular crosslinks. Advanced Glycation End-products (AGEs) can produce intermolecular crosslinks by bonding the free amino groups of neighbouring proteins. In this research, the following hypothesis is explored: The accumulation of AGEs in collagen decreases its proteolytic degradation rates while increasing its stiffness. Fluorescence Lifetime Imaging (FLIM) and Fourier-transform infrared spectroscopy (FTIR) detect biochemical changes in collagen scaffolds during the glycation process. The accumulation of AGEs increases exponentially in the collagen scaffolds as a function of Methylglyoxal (MGO) concentration by performing autofluorescence measurement and competitive ELISA. Glycated scaffolds absorb water at a much higher rate confirming the direct affinity between AGEs and interstitial water within collagen fibrils. In addition, the topology of collagen fibrils as observed by Atomic Force Microscopy (AFM) is a lot more defined following glycation. The elastic modulus of collagen fibrils decreases as a function of glycation, whereas the elastic modulus of collagen scaffolds increases. Finally, the enzymatic degradation of collagen by bacterial collagenase shows a sigmoidal pattern with a much slower degradation rate in the glycated scaffolds. This study identifies unique variations in the properties of collagen following the accumulation of AGEs. STATEMENT OF SIGNIFICANCE: In humans, Advanced Glycation End-products (AGEs) are naturally produced as a result of aging process. There is an evident lack of knowledge in the basic science literature explaining the biomechanical impact of AGE-mediated crosslinks on the functional and structural properties of collagen at both the nanoscale (single fibrils) and mesoscale (bundles of fibrils). This research, demonstrates how it is possible to harness this natural phenomenon in vitro to enhance the properties of engineered collagen fibrils and scaffolds. This study identifies unique variations in the properties of collagen at nanoscale and mesoscale following accumulation of AGEs. In their approach, they investigate the unique properties conferred to collagen, namely enhanced water sorption, differential elastic modulus, and finally sigmoidal proteolytic degradation behavior.


Assuntos
Reação de Maillard , Engenharia Tecidual , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Colágeno/química , Matriz Extracelular/metabolismo
7.
Nat Biomed Eng ; 5(12): 1437-1456, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34031559

RESUMO

The fibrotic encapsulation of implants involves the mechanical activation of myofibroblasts and of pro-fibrotic transforming growth factor beta 1 (TGF-ß1). Here, we show that both softening of the implant surfaces and inhibition of the activation of TGF-ß1 reduce the fibrotic encapsulation of subcutaneous silicone implants in mice. Conventionally stiff silicones (elastic modulus, ~2 MPa) coated with a soft silicone layer (elastic modulus, ~2 kPa) reduced collagen deposition as well as myofibroblast activation without affecting the numbers of macrophages and their polarization states. Instead, fibroblasts around stiff implants exhibited enhanced intracellular stress, increased the recruitment of αv and ß1 integrins, and activated TGF-ß1 signalling. In vitro, the recruitment of αv integrin to focal adhesions and the activation of ß1 integrin and of TGF-ß were higher in myofibroblasts grown on latency-associated peptide (LAP)-coated stiff silicones than on soft silicones. Antagonizing αv integrin binding to LAP through the small-molecule inhibitor CWHM-12 suppressed active TGF-ß signalling, myofibroblast activation and the fibrotic encapsulation of stiff subcutaneous implants in mice.


Assuntos
Próteses e Implantes , Silicones , Fator de Crescimento Transformador beta , Animais , Fibroblastos , Fibrose , Reação a Corpo Estranho , Camundongos , Miofibroblastos/patologia
8.
Nat Commun ; 12(1): 1483, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674611

RESUMO

Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Granzimas/genética , Granzimas/metabolismo , Coração/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Apoptose , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Suínos , Transcriptoma
9.
Biomaterials ; 248: 120017, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32283392

RESUMO

Stem cells in their microenvironment are exposed to a plethora of biochemical signals and biophysical forces. Interrogating the role of each factor in the cell microenvironment, however, remains difficult due to the inability to study microenvironmental cues and tease apart their interactions in high throughput. To address this need, we developed an extracellular matrix (ECM) microarray screening platform capable of tightly controlling substrate stiffness and ECM protein composition to screen the effects of these cues and their interactions on cell fate. We combined this platform with a design of experiments screening strategy to identify optimal conditions that can maintain human pluripotent stem cell (hPSC) pluripotency in chemically defined, xeno-free conditions. Combinations of ECM proteins (fibronectin, vitronectin, laminin-521, and collagen IV) were deposited on polydimethylsiloxane substrates with elastic moduli ranging from ~1 to 60 kPa using a high throughput protein plotter. Through our screening approach, we identified several non-intuitive protein-protein and protein-stiffness interactions and developed three novel culture substrates. hPSCs grown on these novel culture substrates displayed higher proliferation rates and pluripotency marker expression than current gold-standard culture substrates Geltrex- and vitronectin-coated plastic. This ECM microarray and screening approach is not limited to the factors studied here and can be broadly applied to other cell types to systematically screen microenvironmental conditions to optimally guide cell phenotype.


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Proliferação de Células , Matriz Extracelular , Humanos , Laminina , Vitronectina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA