Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; 19(23): e2207207, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36922728

RESUMO

In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.


Assuntos
Nanopartículas Metálicas , Humanos , Prata , Pulmão , Células Epiteliais , Bortezomib
2.
Photosynth Res ; 147(1): 49-60, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33211260

RESUMO

Photosynthesis and carbohydrate metabolism of higher plants need to be tightly regulated to prevent tissue damage during environmental changes. The intracellular position of chloroplasts changes due to a changing light regime. Chloroplast avoidance and accumulation response under high and low light, respectively, are well known phenomena, and deficiency of chloroplast movement has been shown to result in photodamage and reduced biomass accumulation. Yet, effects of chloroplast positioning on underlying metabolic regulation are less well understood. Here, we analysed photosynthesis together with metabolites and enzyme activities of the central carbohydrate metabolism during cold acclimation of the chloroplast unusual positioning 1 (chup1) mutant of Arabidopsis thaliana. We compared cold acclimation under ambient and low light and found that maximum quantum yield of PSII was significantly lower in chup1 than in Col-0 under both conditions. Our findings indicated that net CO2 assimilation in chup1 is rather limited by biochemistry than by photochemistry. Further, cold-induced dynamics of sucrose phosphate synthase differed significantly between both genotypes. Together with a reduced rate of sucrose cycling derived from kinetic model simulations our study provides evidence for a central role of chloroplast positioning for photosynthetic and metabolic acclimation to low temperature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Metabolismo dos Carboidratos , Proteínas de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas dos Microfilamentos/metabolismo , Fotossíntese , Sacarose/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Temperatura Baixa , Proteínas dos Microfilamentos/genética , Mutação , Oxigênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
3.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36904425

RESUMO

The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling.

4.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566986

RESUMO

Efficient chemical modification of cellulose nanocrystals (CNCs) by grafting commonly involves aprotic solvents, toxic reactants, harsh reaction conditions, or catalysts, which have negative effects on the particle character, reduced dispersibility and requires further purification, if products are intended for biomedical applications. This work, in contrast, presents a robust, facile, and green synthesis protocol for the grafting of an amino-reactive fluorophore like fluorescein isothiocyanate (FITC) on aqueous CNCs, combining and modifying existent approaches in a two-step procedure. Comparably high grafting yields were achieved, which were confirmed by thermogravimetry, FTIR, and photometry. The dispersive properties were confirmed by DLS, AF4-MALS, and TEM studies. The presented route is highly suitable for the introduction of silane-bound organic groups and offers a versatile platform for further modification routes of cellulose-based substrates.

5.
Polymers (Basel) ; 13(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451277

RESUMO

Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized. The material types were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. It was found that, particularly for 3D-materials, there is a clear correlation between the material properties, mainly porosity and density, and their absorption performance. Furthermore, it was shown that nanocellulosic precursors are not exclusively suitable to achieve competitive porosity and therefore absorption performance, but also bulk cellulose materials. This finding could lead to developments in cost- and energy-efficient production processes of future lignocellulosic oil spillage removal materials.

6.
Front Chem ; 7: 680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781534

RESUMO

Oxygen scavengers based on gallic acid (GA) usually contain a base that establishes the alkaline conditions necessary for the humidity-induced scavenger reaction. Here we measured the effect of sodium carbonate (Na2CO3) and sodium hydroxide (NaOH) on the reaction kinetics of such scavengers. The time-dependent oxygen absorption of aqueous GA solutions (pH 2.9-13.8) was determined and the results were described using a second-order kinetic model. We calculated the degree of deprotonation (DoD) of GA in the solutions from the species distribution curves, and assessed the effect of the DoD on the reaction kinetics. This revealed that both the reaction rate coefficient k and the scavenger capacity n were significantly affected by the DoD. If the DoD fell below 0.25, there was no significant reaction. Although k increased with the DoD, n reached a maximum at DoD = 0.6-0.7. In principle, target DoD values can be achieved using any base, but a strong base is more efficient because lower quantities are required. In our experiments, the amount of Na2CO3 required to reach the maximum DoD was more than twice that of NaOH. Our results provide the basis for the functional design of active packaging systems incorporating optimized GA-based oxygen scavengers.

7.
PLoS One ; 11(10): e0165058, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788175

RESUMO

The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase equilibria and respective phase diagrams. Most of the phase equilibria could be established based on our experimental results. Only in the Li-rich part where many binary and ternary compounds are present estimations had to be done which are all indicated by dashed lines. A stable ternary miscibility gap could be found which was predicted by modelling the liquid ternary phase in a recent work. The phase diagrams are a crucial input for material databases and thermodynamic optimizations regarding new anode materials for high-power Li-ion batteries.


Assuntos
Cobre/química , Lítio/química , Estanho/química , Ligas/química , Temperatura
8.
J Solid State Chem ; 220: 198-205, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25473128

RESUMO

The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

9.
Monatsh Chem ; 145(11): 1697-1706, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26166890

RESUMO

ABSTRACT: The partial and integral molar enthalpies of mixing of liquid Co-Li-Sn alloys were determined using drop calorimetry. The investigations were performed along six sections by the addition of lithium to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 2:98, [Formula: see text]/[Formula: see text] ≈ 1:9, and [Formula: see text]/[Formula: see text] ≈ 3:17 as well as by the addition of cobalt to mixtures with the compositions [Formula: see text]/[Formula: see text] ≈ 3:17, [Formula: see text]/[Formula: see text] ≈ 1:2, and [Formula: see text]/[Formula: see text] ≈ 1:1 at a temperature of 1,173 K. The Co-Li-Sn system shows exothermic behavior of the integral molar enthalpy of mixing in the investigated concentration range. The integral molar enthalpy of mixing of liquid Co-Li system was calculated by Miedema's model to fit our measured ternary data using an extended Redlich-Kister-Muggianu model for substitutional solutions.

10.
Monatsh Chem ; 143(9): 1275-1287, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-26166872

RESUMO

ABSTRACT: The binary system Cu-Sb is a constituent system that is studied in investigations of technically important ternary and quaternary alloy systems (e.g., casting alloys and lead-free solders). Although this binary system has been thoroughly investigated over the last century, there are still some uncertainties regarding its high-temperature phases. Thus, parts of its phase diagram have been drawn with dashed lines in reviews published in the literature. The aim of this work was to resolve these uncertainties in the current phase diagram of Cu-Sb by performing XRD, SEM-EDX, EPMA, and DTA. The results from thermal analysis agreed well with those given in the literature, although some modifications due to the invariant reaction temperatures were necessary. In particular, reactions located on the Cu-rich side of the nonquenchable high-temperature ß phase (BiF3-type) left considerable scope for interpretation. Generally, the structural descriptions of the various binary phases given in the literature were verified. The range of homogeneity of the ε phase (Cu3Ti type) was found to be higher on the Sb-rich side. Most of the reaction temperatures were verified, but a few had to be revised, such as the eutectoid reaction [Formula: see text] at 440 °C (found to occur at 427 °C in this work) and the eutectoid reaction [Formula: see text] at 400 °C (found to occur at 440 °C in this work). Further phase transformations that had previously only been estimated were confirmed, and their characteristic temperatures were determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA