Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(3): 100520, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369184

RESUMO

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Assuntos
Amidoidrolases , Corantes Fluorescentes , Etanolaminas/química , Lipídeos
2.
EMBO J ; 39(15): e104749, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32525588

RESUMO

CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Ceramidas/imunologia , Memória Imunológica , Receptores CCR5/deficiência , Animais , Antígenos/genética , Linfócitos T CD4-Positivos/citologia , Ceramidas/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Receptores CCR5/imunologia
3.
Bioorg Chem ; 145: 107233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422591

RESUMO

Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.


Assuntos
Ceramidas , Oxirredutases , Ceramidas/farmacologia , Ceramidas/química , Oxirredutases/metabolismo , Ciclopropanos/farmacologia
4.
J Enzyme Inhib Med Chem ; 38(1): 343-348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519337

RESUMO

Ceramide has a key role in the regulation of cellular senescence and apoptosis. As Ceramide levels are lowered by the action of acid ceramidase (AC), abnormally expressed in various cancers, the identification of AC inhibitors has attracted increasing interest. However, this finding has been mainly hampered by the lack of formats suitable for the screening of large libraries. We have overcome this drawback by adapting a fluorogenic assay to a 384-well plate format. The performance of this optimised platform has been proven by the screening a library of 4100 compounds. Our results show that the miniaturised platform is well suited for screening purposes and it led to the identification of several hits, that belong to different chemical classes and display potency ranges of 2-25 µM. The inhibitors also show selectivity over neutral ceramidase and retain activity in cells and can therefore serve as a basis for further chemical optimisation.


Assuntos
Ceramidase Ácida , Neoplasias , Humanos , Ceramidase Ácida/antagonistas & inibidores , Apoptose , Ceramidas/química , Bibliotecas de Moléculas Pequenas
5.
J Org Chem ; 87(24): 16351-16367, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441972

RESUMO

Ceramides (Cer) are bioactive sphingolipids that have been proposed as potential disease biomarkers since they are involved in several cellular stress responses, including apoptosis and senescence. 1-Deoxyceramides (1-deoxyCer), a particular subtype of noncanonical sphingolipids, have been linked to the pathogenesis of type II diabetes. To investigate the metabolism of these bioactive lipids, as well as to have a better understanding of the signaling processes where they participate, it is essential to expand the toolbox of fluorescent sphingolipid probes exhibiting complementary subcellular localization. Herein, we describe a series of new sphingolipid probes tagged with two different organic fluorophores, a far-red/NIR-emitting coumarin derivative (COUPY) and a green-emitting BODIPY. The assembly of the probes involved a combination of olefin cross metathesis and click chemistry reactions as key steps, and these fluorescent ceramide analogues exhibited excellent emission quantum yields, being the Stokes' shifts of the COUPY derivatives much higher than those of the BODIPY counterparts. Confocal microscopy studies in HeLa cells confirmed an excellent cellular permeability for these sphingolipid probes and revealed that most of the vesicles stained by COUPY probes were either lysosomes or endosomes, whereas BODIPY probes accumulated either in Golgi apparatus or in nonlysosomal intracellular vesicles. The fact that the two sets of fluorescent Cer probes have such different staining patterns indicates that their subcellular distribution is not entirely defined by the sphingolipid moiety but rather influenced by the fluorophore.


Assuntos
Ceramidas , Diabetes Mellitus Tipo 2 , Humanos , Ceramidas/química , Ceramidas/metabolismo , Células HeLa , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Corantes Fluorescentes/química , Ionóforos
6.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806262

RESUMO

Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a natural anhydrous sphingolipid (SL) derivative reported to induce cytoplasmic vacuolation and cytotoxicity in several cancer cell lines. Here, we have investigated the mechanism and signalling pathways involved in the cytotoxicity induced by the natural sphingolipid Jaspine B (JB) in lung adenocarcinoma A549 cells, which harbor the G12S K-Ras mutant. The effect of JB on inducing cytoplasmic vacuolation and modifying cell viability was determined in A549 cells, as well as in mouse embryonic fibroblasts (MEF) lacking either the autophagy-related gene ATG5 or BAX/BAK genes. Apoptosis was analyzed by flow cytometry after annexin V/propidium iodide staining, in the presence and absence of z-VAD. Autophagy was monitored by LC3-II/GFP-LC3-II analysis, and autophagic flux experiments using protease inhibitors. Phase contrast, confocal, and transmission electron microscopy were used to monitor cytoplasmic vacuolation and the uptake of Lucifer yellow to assess macropinocyosis. We present evidence that cytoplasmic vacuolation and methuosis are involved in Jaspine B cytotoxicity over A549 cells and that activation of 5' AMP-activated protein kinase (AMPK) could be involved in Jaspine-B-induced vacuolation, independently of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin complex 1 (PI3K/Akt/mTORC1) axis.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Autofagia , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Endossomos , Fibroblastos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Esfingolipídeos/farmacologia , Esfingosina/análogos & derivados
7.
Org Biomol Chem ; 19(11): 2456-2467, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33650618

RESUMO

The suitability as FRET probes of two bichromophoric 1-deoxydihydroceramides containing a labelled spisulosine derivative as a sphingoid base and two differently ω-labelled fluorescent palmitic acids has been evaluated. The ceramide synthase (CerS) catalyzed metabolic incorporation of ω-azido palmitic acid into the above labeled spisulosine to render the corresponding ω-azido 1-deoxyceramide has been studied in several cell lines. In addition, the strain-promoted click reaction between this ω-azido 1-deoxyceramide and suitable fluorophores has been optimized to render the target bichromophoric 1-deoxydihydroceramides. These results pave the way for the development of FRET-based assays as a new tool to study sphingolipid metabolism.


Assuntos
Ceramidas/metabolismo , Corantes Fluorescentes/síntese química , Lipídeos/síntese química , Oxirredutases/metabolismo , Ácidos Palmíticos/química , Animais , Linhagem Celular , Química Click , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Espectrometria de Fluorescência , Espectrometria de Massas em Tandem
8.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681567

RESUMO

Senile plaque formation as a consequence of amyloid-ß peptide (Aß) aggregation constitutes one of the main hallmarks of Alzheimer's disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aß production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice).


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Ceramidas/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Erúcicos/metabolismo , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-6/efeitos adversos , Gangliosídeos/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos
9.
J Org Chem ; 85(2): 419-429, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31860798

RESUMO

The synthesis of a series of vinylated analogues of sphingosine-1-phosphate together with their unambiguous configurational assignment by VCD methods is reported. Among them, compound RBM10-8 can irreversibly inhibit human sphingosine-1-phosphate lyase (hS1PL) while behaving also as an enzyme substrate. These findings, together with the postulated mechanism for S1PL activity, reinforce the role of RBM10-8 as a new mechanism-based hS1PL inhibitor.


Assuntos
Aldeído Liases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Aldeído Liases/química , Sequência de Aminoácidos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Estereoisomerismo
10.
J Lipid Res ; 60(6): 1174-1181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30926626

RESUMO

New fluorogenic ceramidase substrates derived from the N-acyl modification of our previously reported probes (RBM14) are reported. While none of the new probes were superior to the known RBM14C12 as acid ceramidase substrates, the corresponding nervonic acid amide (RBM14C24:1) is an efficient and selective substrate for the recombinant human neutral ceramidase, both in cell lysates and in intact cells. A second generation of substrates, incorporating the natural 2-(N-acylamino)-1,3-diol-4-ene framework (compounds RBM15) is also reported. Among them, the corresponding fatty acyl amides with an unsaturated N-acyl chain can be used as substrates to determine alkaline ceramidase (ACER)1 and ACER2 activities. In particular, compound RBM15C18:1 has emerged as the best fluorogenic probe reported so far to measure ACER1 and ACER2 activities in a 96-well plate format.


Assuntos
Ceramidase Alcalina/metabolismo , Esfingolipídeos/metabolismo , Umbeliferonas/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectroscopia de Ressonância Magnética , Microssomos/metabolismo , Estrutura Molecular , Proteínas de Ligação a RNA/metabolismo
11.
J Lipid Res ; 60(9): 1590-1602, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363040

RESUMO

The combination of daunorubicin (dnr) and cytarabine (Ara-C) is a cornerstone of treatment for acute myelogenous leukemia (AML); resistance to these drugs is a major cause of treatment failure. Ceramide, a sphingolipid (SL), plays a critical role in cancer cell apoptosis in response to chemotherapy. Here, we investigated the effects of chemotherapy selection pressure with Ara-C and dnr on SL composition and enzyme activity in the AML cell line HL-60. Resistant cells, those selected for growth in Ara-C- and dnr-containing medium (HL-60/Ara-C and HL-60/dnr, respectively), demonstrated upregulated expression and activity of glucosylceramide synthase, acid ceramidase (AC), and sphingosine kinase 1 (SPHK1); were more resistant to ceramide than parental cells; and displayed sensitivity to inhibitors of SL metabolism. Lipidomic analysis revealed a general ceramide deficit and a profound upswing in levels of sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) in HL-60/dnr cells versus parental and HL-60/Ara-C cells. Both chemotherapy-selected cells also exhibited comprehensive upregulations in mitochondrial biogenesis consistent with heightened reliance on oxidative phosphorylation, a property that was partially reversed by exposure to AC and SPHK1 inhibitors and that supports a role for the phosphorylation system in resistance. In summary, dnr and Ara-C selection pressure induces acute reductions in ceramide levels and large increases in S1P and C1P, concomitant with cell resilience bolstered by enhanced mitochondrial remodeling. Thus, strategic control of ceramide metabolism and further research to define mitochondrial perturbations that accompany the drug-resistant phenotype offer new opportunities for developing therapies that regulate cancer growth.


Assuntos
Mitocôndrias/metabolismo , Esfingolipídeos/metabolismo , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidases/metabolismo , Ceramidas/metabolismo , Ácidos Graxos Insaturados/farmacologia , Glucosiltransferases/metabolismo , Células HL-60 , Humanos , Immunoblotting , Lisofosfolipídeos/metabolismo , Espectrometria de Massas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/análogos & derivados , Esfingosina/metabolismo
12.
J Am Chem Soc ; 141(19): 7736-7742, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31030513

RESUMO

Acid ceramidase (AC) hydrolyzes ceramides into sphingoid bases and fatty acids. The enzyme is overexpressed in several types of cancer and Alzheimer's disease, and its genetic defect causes different incurable disorders. The availability of a method for the specific visualization of catalytically active AC in intracellular compartments is crucial for diagnosis and follow-up of therapeutic strategies in diseases linked to altered AC activity. This work was undertaken to develop activity-based probes for the detection of AC. Several analogues of the AC inhibitor SABRAC were synthesized and found to act as very potent (two-digit nM range) irreversible AC inhibitors by reaction with the active site Cys143. Detection of active AC in cell-free systems was achieved either by using fluorescent SABRAC analogues or by click chemistry with an azide-substituted analogue. The compound affording the best features allowed the unprecedented labeling of active AC in living cells.


Assuntos
Ceramidase Ácida/metabolismo , Imagem Molecular , Células A549 , Ceramidase Ácida/antagonistas & inibidores , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Humanos , Sondas Moleculares/metabolismo
13.
Am J Pathol ; 187(4): 864-883, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28342444

RESUMO

Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.


Assuntos
Sistema Nervoso Central/anormalidades , Lipogranulomatose de Farber/complicações , Lipogranulomatose de Farber/patologia , Malformações do Sistema Nervoso/etiologia , Malformações do Sistema Nervoso/patologia , Ceramidase Ácida/metabolismo , Animais , Comportamento Animal , Sistema Nervoso Central/patologia , Cerebelo/patologia , Cerebelo/ultraestrutura , Cérebro/patologia , Cérebro/ultraestrutura , Homozigoto , Hidrocefalia/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora , Neurônios/patologia , Neurônios/ultraestrutura , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esfingolipídeos/metabolismo , Fatores de Tempo
14.
Langmuir ; 34(39): 11749-11758, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30183303

RESUMO

Sphingosine [(2 S,3 R,4 E)-2-amino-4-octadecene-1,3-diol] is the most common sphingoid base in mammals. Ceramides are N-acyl sphingosines. Numerous small variations on this canonical structure are known, including the 1-deoxy, the 4,5-dihydro, and many others. However, whenever there is a Δ4 double bond, it adopts the trans (or E) configuration. We synthesized a ceramide containing 4 Z-sphingosine and palmitic acid ( cis-pCer) and studied its behavior in the form of monolayers extended on an air-water interface. cis-pCer acted very differently from the trans isomer in that, upon lateral compression of the monolayer, a solid-solid transition was clearly observed at a mean molecular area ≤44 Å2·molecule-1, whose characteristics depended on the rate of compression. The solid-solid transition, as well as states of domain coexistence, could be imaged by atomic force microscopy and by Brewster-angle microscopy. Atomistic molecular dynamics simulations provided results compatible with the experimentally observed differences between the cis and trans isomers. The data can help in the exploration of other solid-solid transitions in lipids, both in vitro and in vivo, that have gone up to now undetected because of their less obvious change in surface properties along the transition, as compared to cis-pCer.

15.
Pharm Res ; 35(3): 49, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29411122

RESUMO

PURPOSE: The induction of autophagy has recently been explored as a promising therapeutic strategy to combat Alzheimer's disease. Among many other factors, there is evidence that ceramides/dihydroceramides act as mediators of autophagy, although the exact mechanisms underlying such effects are poorly understood. Here, we describe how two dihydroceramide desaturase inhibitors (XM461 and XM462) trigger autophagy and reduce amyloid secretion by neurons. METHODS: Neurons isolated from wild-type and APP/PS1 transgenic mice were exposed to the two dihydroceramide desaturase inhibitors to assess their effect on these cell's protein and lipid profiles. RESULTS: Both dihydroceramide desaturase inhibitors increased the autophagic vesicles in wild-type neurons, reflected as an increase in LC3-II, and this was correlated with the accumulation of dihydroceramides and dihydrosphingomyelins. Exposing APP/PS1 transgenic neurons to these inhibitors also produced a 50% reduction in amyloid secretion and/or production. The lipidomic defects triggered by these dihydroceramide desaturase inhibitors were correlated with a loss of S6K activity, witnessed by the changes in S6 phosphorylation, which strongly suggested a reduction of mTORC1 activity. CONCLUSIONS: The data obtained strongly suggest that dihydroceramide desaturase 1 activity may modulate autophagy and mTORC1 activity in neurons, inhibiting amyloid secretion and S6K activity. As such, it is tantalizing to propose that dihydroceramide desaturase 1 may be an important therapeutic target to combat amyloidosis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Inibidores Enzimáticos/farmacologia , Neurônios/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Ceramidas/farmacologia , Ceramidas/uso terapêutico , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Oxirredutases/uso terapêutico , Presenilina-1/genética , Cultura Primária de Células , Proteínas Quinases S6 Ribossômicas/metabolismo , Sulfetos/farmacologia , Sulfetos/uso terapêutico
16.
J Lipid Res ; 58(8): 1500-1513, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572516

RESUMO

Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Esfingosina/análogos & derivados , Neoplasias Gástricas/patologia , Acilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pinocitose/efeitos dos fármacos , Esfingosina/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
17.
Biochim Biophys Acta Gen Subj ; 1861(2): 264-275, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27894925

RESUMO

BACKGROUND: Autophagy consists on the delivery of cytoplasmic material and organelles to lysosomes for degradation. Research on autophagy is a growing field because deciphering the basic mechanisms of autophagy is key to understanding its role in health and disease, and to paving the way to discovering novel therapeutic strategies. Studies with chemotherapeutic drugs and pharmacological tools support a role for dihydroceramides as mediators of autophagy. However, their effect on the autophagy outcome (cell survival or death) is more controversial. METHODS: We have examined the capacity of structurally varied Des1 inhibitors to stimulate autophagy (LC3-II analysis), to increase dihydroceramides (mass spectrometry) and to reduce cell viability (SRB) in T98G and U87MG glioblastoma cells under different experimental conditions. RESULTS: The compounds activity on autophagy induction took place concomitantly with accumulation of dihydroceramides, which occurred by both stimulation of ceramide synthesis de novo and reduction of Des1 activity. However, autophagy was also induced by the test compounds after preincubation with myriocin and in cells with a reduced capacity to produce dihydroceramides (U87DND). Autophagy inhibition with 3-methyladenine in the de novo dihydroceramide synthesis competent U87MG cells increased cytotoxicity, while genetic inhibition of autophagy in U87DND cells, poorly efficient at synthesizing dihydroceramides, augmented resistance to the test compounds. CONCLUSION: Dihydroceramide desaturase 1 inhibitors activate autophagy via both dihydroceramide-dependent and independent pathways and the balance between the two pathways influences the final cell fate. GENERAL SIGNIFICANCE: The cells capacity to biosynthesize dihydroceramides must be taken into account in proautophagic Des1 inhibitors-including therapies.


Assuntos
Autofagia/efeitos dos fármacos , Ceramidas/metabolismo , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos
18.
J Biol Chem ; 290(5): 2822-30, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25519910

RESUMO

The orosomucoid-like (ORMDL) protein family is involved in the regulation of de novo sphingolipid synthesis, calcium homeostasis, and unfolded protein response. Single nucleotide polymorphisms (SNPs) that increase ORMDL3 expression have been associated with various immune/inflammatory diseases, although the pathophysiological mechanisms underlying this association are poorly understood. ORMDL proteins are claimed to be inhibitors of the serine palmitoyltransferase (SPT). However, it is not clear whether individual ORMDL expression levels have an impact on ceramide synthesis. The present study addressed the interaction with and regulation of SPT activity by ORMDLs to clarify their pathophysiological relevance. We have measured ceramide production in HEK293 cells incubated with palmitate as a direct substrate for SPT reaction. Our results showed that a coordinated overexpression of the three isoforms inhibits the enzyme completely, whereas individual ORMDLs are not as effective. Immunoprecipitation and fluorescence resonance energy transfer (FRET) studies showed that mammalian ORMDLs form oligomeric complexes that change conformation depending on cellular sphingolipid levels. Finally, using macrophages as a model, we demonstrate that mammalian cells modify ORMDL genes expression levels coordinately to regulate the de novo ceramide synthesis pathway. In conclusion, we have shown a physiological modulation of SPT activity by general ORMDL expression level regulation. Moreover, because single ORMDL3 protein alteration produces an incomplete inhibition of SPT activity, this work argues against the idea that ORMDL3 pathophysiology could be explained by a simple on/off mechanism on SPT activity.


Assuntos
Ceramidas/metabolismo , Orosomucoide/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Orosomucoide/genética , Palmitatos/metabolismo , Isoformas de Proteínas/metabolismo , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/metabolismo
19.
Biol Chem ; 397(2): 147-55, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26501163

RESUMO

Gestation is regulated by an inflammatory process that allows implantation and parturition. The comprehension of such inflammatory switches is important for the identification of therapeutic targets in pregnancy defects. Sphingolipids are a class of structural membrane components with important signaling functions. Among sphingolipids, ceramide is a well-known mediator of stress signals and pro-inflammatory responses. In this paper, we evaluated the association between ceramide increase and the inflammatory process of labor, comparing placentas from vaginal deliveries, including both spontaneous and induced labor, versus elective cesarean. We demonstrated that: (i) the inflammatory marker IL-6 is upregulated in labored placentas; (ii) IL-6 content inversely correlates with labor duration; (iii) ceramide content and expression of serine palmitoyl transferase (SPT, rate limiting enzyme for de novo ceramide synthesis) are increased in labored placentas; (iv) the expression of SPT directly correlates with inflammation and inversely with labor duration. These observations suggest that ceramide metabolism and signaling may be implicated in controlling important inflammatory mechanisms driving gestation: we hypothesize that ceramide can be a therapeutic target in inflammatory complications of parturition.


Assuntos
Ceramidas/biossíntese , Inflamação/metabolismo , Trabalho de Parto/metabolismo , Adulto , Feminino , Humanos , Interleucina-6/metabolismo , Placenta/metabolismo , Placenta/patologia , Gravidez , Serina C-Palmitoiltransferase/biossíntese , Serina C-Palmitoiltransferase/metabolismo
20.
Pulm Pharmacol Ther ; 36: 31-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26704083

RESUMO

INTRODUCTION: Secretory phospholipase A2 regulates surfactant catabolism and inflammatory cascade. This enzyme is correlated with compliance, oxygenation and major outcomes in various forms of acute respiratory failure. Steroids inhibit secretory phospholipase A2 in cell culture and are widely used to boost surfactant production before preterm delivery. No data are available about the effect of antenatal steroids on secretory phospholipase A2 in the offspring: we aimed to study this effect in a rat model of preterm lung. MATERIAL AND METHODS: Fifteen pregnant Wistar rats were randomized to receive betamethasone, dexamethasone or placebo at 20 and 21 days gestation. Newborn rats were supported for 8 h and then sacrificed: lung tissue was analysed for secretory phospholipase A2 expression and activity, inflammatory mediators and protein content. Lipidomics was analysed using liquid chromatography-mass spectrometry. RESULTS: Secretory phospholipase A2 expression was significantly reduced by antenatal steroids (p < 0.001). Secretory phospholipase A2 activity, TNFα and lysophosphatidylethanolamine, a product of phospholipase reaction, were lowest in betamethasone-treated rats (p < 0.001). There was a strong correlation between secretory phospholipase A2 activity and lysophosphatidylethanolamine (r = 0.75; p = 0.001) and this remained significant after adjustment for total proteins or phospholipids. CONCLUSIONS: Antenatal steroids decrease secretory phospholipase A2 in rat model of preterm lung.


Assuntos
Pulmão/enzimologia , Fosfolipases A2 Secretórias/antagonistas & inibidores , Nascimento Prematuro/patologia , Esteroides/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Betametasona/farmacologia , Dexametasona/farmacologia , Feminino , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pulmão/patologia , Lisofosfolipídeos/metabolismo , Gravidez , Surfactantes Pulmonares/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA