Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 12(6): e1006119, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27341449

RESUMO

Fatty acids (FAs) are involved in cellular processes important for normal body function, and perturbation of FA balance has been linked to metabolic disturbances, including type 2 diabetes. An individual's level of FAs is affected by diet, lifestyle, and genetic variation. We aimed to improve the understanding of the mechanisms and pathways involved in regulation of FA tissue levels, by identifying genetic loci associated with inter-individual differences in erythrocyte membrane FA levels. We assessed the levels of 22 FAs in the phospholipid fraction of erythrocyte membranes from 2,626 Greenlanders in relation to single nucleotide polymorphisms genotyped on the MetaboChip or imputed. We identified six independent association signals. Novel loci were identified on chromosomes 5 and 11 showing strongest association with oleic acid (rs76430747 in ACSL6, beta (SE): -0.386% (0.034), p = 1.8x10-28) and docosahexaenoic acid (rs6035106 in DTD1, 0.137% (0.025), p = 6.4x10-8), respectively. For a missense variant (rs80356779) in CPT1A, we identified a number of novel FA associations, the strongest with 11-eicosenoic acid (0.473% (0.035), p = 2.6x10-38), and for variants in FADS2 (rs174570), LPCAT3 (rs2110073), and CERS4 (rs11881630) we replicated known FA associations. Moreover, we observed metabolic implications of the ACSL6 (rs76430747) and CPT1A (rs80356779) variants, which both were associated with altered HbA1c (0.051% (0.013), p = 5.6x10-6 and -0.034% (0.016), p = 3.1x10-4, respectively). The latter variant was also associated with reduced insulin resistance (HOMA-IR, -0.193 (0.050), p = 3.8x10-6), as well as measures of smaller body size, including weight (-2.676 kg (0.523), p = 2.4x10-7), lean mass (-1.200 kg (0.271), p = 1.7x10-6), height (-0.966 cm (0.230), p = 2.0x10-5), and BMI (-0.638 kg/m2 (0.181), p = 2.8x10-4). In conclusion, we have identified novel genetic determinants of FA composition in phospholipids in erythrocyte membranes, and have shown examples of links between genetic variants associated with altered FA membrane levels and changes in metabolic traits.


Assuntos
Membrana Eritrocítica/genética , Ácidos Graxos/genética , Polimorfismo de Nucleotídeo Único/genética , Tamanho Corporal/genética , Carnitina O-Palmitoiltransferase/genética , Coenzima A Ligases/genética , Diabetes Mellitus Tipo 2/genética , Ácidos Docosa-Hexaenoicos/genética , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Loci Gênicos/genética , Genótipo , Hemoglobinas Glicadas/genética , Groenlândia , Humanos , Insulina/genética , Resistência à Insulina/genética , Masculino , Ácido Oleico/genética , Fosfolipídeos/genética
2.
Endocrinology ; 164(10)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37610219

RESUMO

Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, ß-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.


Assuntos
Metabolismo dos Lipídeos , Receptores de Glucocorticoides , Masculino , Animais , Camundongos , Metabolismo dos Lipídeos/genética , Receptores de Glucocorticoides/genética , Hepatócitos , Fígado , Adipogenia
3.
EMBO Mol Med ; 15(12): e17836, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37766669

RESUMO

The epithelial-to-mesenchymal transition (EMT) plays a central role in the development of cancer metastasis and resistance to chemotherapy. However, its pharmacological treatment remains challenging. Here, we used an EMT-focused integrative functional genomic approach and identified an inverse association between short-chain fatty acids (propionate and butanoate) and EMT in non-small cell lung cancer (NSCLC) patients. Remarkably, treatment with propionate in vitro reinforced the epithelial transcriptional program promoting cell-to-cell contact and cell adhesion, while reducing the aggressive and chemo-resistant EMT phenotype in lung cancer cell lines. Propionate treatment also decreased the metastatic potential and limited lymph node spread in both nude mice and a genetic NSCLC mouse model. Further analysis revealed that chromatin remodeling through H3K27 acetylation (mediated by p300) is the mechanism underlying the shift toward an epithelial state upon propionate treatment. The results suggest that propionate administration has therapeutic potential in reducing NSCLC aggressiveness and warrants further clinical testing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Propionatos/farmacologia , Propionatos/uso terapêutico , Camundongos Nus , Linhagem Celular Tumoral , Pulmão/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular
4.
J Clin Endocrinol Metab ; 107(12): 3261-3274, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36111559

RESUMO

CONTEXT: Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. OBJECTIVE: We investigated the effects of a 6-day subcutaneous GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, inflammatory markers, respiratory exchange ratio (RER), and bone homeostasis in patients with type 1 diabetes. METHODS: In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous subcutaneous infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed 7-day washout period. RESULTS: During GIP infusion, participants (26 ± 8 years [mean ± SD]; BMI 23.8 ± 1.8 kg/m2; glycated hemoglobin A1c 51 ± 10 mmol/mol [6.8 ± 3.1%]) experienced transiently increased circulating concentrations of nonesterified fatty acid (NEFA) (P = 0.0005), decreased RER (P = 0.009), indication of increased fatty acid ß-oxidation, and decreased levels of the bone resorption marker C-terminal telopeptide (P = 0.000072) compared with placebo. After 6 days of GIP infusion, hepatic fat content was increased by 12.6% (P = 0.007) and supraclavicular skin temperature, a surrogate indicator of BAT activity, was increased by 0.29 °C (P < 0.000001) compared with placebo infusion. WAT transcriptomic profile as well as circulating lipid species, proteome, markers of inflammation, and bone homeostasis were unaffected. CONCLUSION: Six days of subcutaneous GIP infusion in men with type 1 diabetes transiently decreased bone resorption and increased NEFA and ß-oxidation. Further, hepatic fat content, and supraclavicular skin temperature were increased without affecting WAT transcriptomics, the circulating proteome, lipids, or inflammatory markers.


Assuntos
Reabsorção Óssea , Diabetes Mellitus Tipo 1 , Masculino , Humanos , Transcriptoma , Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Estudos Cross-Over , Proteoma/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Tecido Adiposo Branco , Termogênese , Reabsorção Óssea/metabolismo
5.
J Neurosci ; 29(5): 1319-30, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193879

RESUMO

Microglia and infiltrating leukocytes are considered major producers of tumor necrosis factor (TNF), which is a crucial player in cerebral ischemia and brain inflammation. We have identified a neuroprotective role for microglial-derived TNF in cerebral ischemia in mice. We show that cortical infarction and behavioral deficit are significantly exacerbated in TNF-knock-out (KO) mice compared with wild-type mice. By using in situ hybridization, immunohistochemistry, and green fluorescent protein bone marrow (BM)-chimeric mice, TNF was shown to be produced by microglia and infiltrating leukocytes. Additional analysis demonstrating that BM-chimeric TNF-KO mice grafted with wild-type BM cells developed larger infarcts than BM-chimeric wild-type mice grafted with TNF-KO BM cells provided evidence that the neuroprotective effect of TNF was attributable to microglial- not leukocyte-derived TNF. In addition, observation of increased infarction in TNF-p55 receptor (TNF-p55R)-KO mice compared with TNF-p75R and wild-type mice suggested that microglial-derived TNF exerts neuroprotective effects through TNF-p55R. We finally report that TNF deficiency is associated with reduced microglial population size and Toll-like receptor 2 expression in unmanipulated brain, which might also influence the neuronal response to injury. Our results identify microglia and microglial-derived TNF as playing a key role in determining the survival of endangered neurons in cerebral ischemia.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Microglia/metabolismo , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Isquemia Encefálica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Microglia/fisiologia , Neurônios/patologia , Fator de Necrose Tumoral alfa/fisiologia
6.
Biochem Biophys Rep ; 9: 47-50, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955988

RESUMO

Carnitine acetyltransferase (CRAT) deficiency has previously been shown to result in muscle insulin resistance due to accumulation of long-chain acylcarnitines. However, differences in the acylcarnitine profile and/or changes in gene expression and protein abundance of CRAT in myotubes obtained from obese patients with type 2 diabetes mellitus (T2DM) and glucose-tolerant obese and lean controls remain unclear. The objective of the study was to examine whether myotubes from obese patients with T2DM express differences in gene expression and protein abundance of CRAT and in acylcarnitine species pre-cultured under glucose and insulin concentrations similar to those observed in healthy individuals in the over-night fasted, resting state. Primary myotubes obtained from obese persons with or without T2DM and lean controls (n=9 in each group) were cultivated and harvested for LC-MS-based profiling of acylcarnitines. The mRNA expression and protein abundance of CRAT were determined by qPCR and Western Blotting, respectively. Our results suggest that the mRNA levels and protein abundance of CRAT were similar between groups. Of the 14 different acylcarnitine species measured by LC-MS, the levels of palmitoylcarnitine (C16) and octadecanoylcarnitine (C18) were slightly reduced in myotubes derived from T2DM patients (p<0.05) compared to glucose-tolerant obese and lean controls. This suggests that the CRAT function is not the major contributor to primary insulin resistance in cultured myotubes obtained from obese T2DM patients.

7.
J Clin Lipidol ; 11(2): 515-523.e6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28502509

RESUMO

BACKGROUND: Mutations in the lipoprotein lipase gene causing decreased lipoprotein lipase activity are associated with surrogate markers of insulin resistance and the metabolic syndrome in humans. OBJECTIVE: We investigated the hypothesis that a heterozygous lipoprotein lipase mutation (N291S) induces whole-body insulin resistance and alterations in the plasma metabolome. METHODS: In 6 carriers of a heterozygous lipoprotein lipase mutation (N291S) and 11 age-matched and weight-matched healthy controls, we examined insulin sensitivity and substrate metabolism by euglycemic-hyperinsulinemic clamps combined with indirect calorimetry. Plasma samples were taken before and after the clamp (4 hours of physiological hyperinsulinemia), and metabolites were measured enzymatically or by gas chromatography-mass spectrometry. RESULTS: Compared with healthy controls, heterozygous carriers of a defective lipoprotein lipase allele had elevated fasting plasma levels triglycerides (P < .006), and markedly impaired insulin-stimulated glucose disposal rates (P < .024) and nonoxidative glucose metabolism (P < .015). Plasma metabolite profiling demonstrated lower circulating levels of pyruvic acid and α-tocopherol in the N291S carriers than in controls both before and after stimulation with insulin (all >1.5-fold change and P < .05). CONCLUSION: Heterozygous carriers with a defective lipoprotein lipase allele are less insulin sensitive and have increased plasma levels of nonesterified fatty acids and triglycerides. The heterozygous N291S carriers also have a distinct plasma metabolomic signature, which may serve as a diagnostic tool for deficient lipoprotein lipase activity and as a marker of lipid-induced insulin resistance.


Assuntos
Heterozigoto , Resistência à Insulina/genética , Lipase Lipoproteica/genética , Mutação , Plasma/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Curr Top Med Chem ; 12(12): 1331-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22690680

RESUMO

Chemical genomics combines chemistry with molecular biology as a means of exploring the function of unknown proteins or identifying the proteins responsible for a particular phenotype induced by a small cell-permeable bioactive molecule. Chemical genomics therefore has the potential to identify and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster, Caenorhabditis elegans and Saccharomyces cerevisiae have provided momentum to cell biological and biomedical research, particularly in the functional characterization of gene functions and the identification of novel drug targets. We therefore anticipate that chemical genomics and the vast development of genomic technologies will play critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular mechanisms of action.


Assuntos
Descoberta de Drogas , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Terapia de Alvo Molecular , Animais , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Terapia Genética , Humanos
9.
Worm ; 1(1): 26-30, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058820

RESUMO

The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured by scintillation counting. Treating animals with sodium azide, an inhibitor of the electron transport chain, reduced (3)H2O production to approximately 15%, while boiling of animals prior to assay completely blocked the production of labeled water. We demonstrate that worms fed different bacterial strains exhibit different fatty acid oxidation rates. We show that starvation results in increased fatty acid oxidation, which is independent of the transcription factor NHR-49. On the contrary, fatty acid oxidation is reduced to approximately 70% in animals lacking the worm homolog of the insulin receptor, DAF-2. Hence, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of ß-oxidation in C. elegans.

10.
FEBS Lett ; 584(11): 2183-93, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20371247

RESUMO

The nematode Caenorhabditis elegans (C. elegans) has during the last decade emerged as an invaluable eukaryotic model organism to understand the metabolic and neuro-endocrine regulation of lipid accumulation. The fundamental pathways of food intake, digestion, metabolism, and signalling are evolutionary conserved between mammals and worms making C. elegans a genetically and metabolically extremely tractable model to decipher new regulatory mechanisms of lipid storage and to understand how nutritional and genetic perturbations can lead to obesity and other metabolic diseases. Besides providing an overview of the most important regulatory mechanisms of lipid accumulation in C. elegans, we also critically assess the current methodologies to monitor lipid storage and content as various methods differ in their applicability, consistency, and simplicity.


Assuntos
Caenorhabditis elegans/metabolismo , Corantes Fluorescentes/metabolismo , Metabolismo dos Lipídeos , Animais , Transporte Biológico , Caenorhabditis elegans/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA