Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Public Health ; 21(1): 509, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726697

RESUMO

BACKGROUND: Recent arboviral disease outbreaks highlight the value a better understanding of the spread of disease-carrying mosquitoes across spatial-temporal scales can provide. Traditional surveillance tools are limited by jurisdictional boundaries, workforce constraints, logistics, and cost; factors that in low- and middle-income countries often conspire to undermine public health protection efforts. To overcome these, we undertake a pilot study designed to explore if citizen science provides a feasible strategy for arboviral vector surveillance in small developing Pacific island contexts. METHODS: We recruited, trained, and equipped community volunteers to trap and type mosquitos within their household settings, and to report count data to a central authority by short-message-service. Mosquito catches were independently assessed to measure participants' mosquito identification accuracy. Other data were collected to measure the frequency and stability of reporting, and volunteers' experiences. RESULTS: Participants collected data for 78.3% of the study period, and agreement between the volunteer citizen scientists' and the reviewing entomologist's mosquito identification was 94%. Opportunity to contribute to a project of social benefit, the chance to learn new skills, and the frequency of engagement with project staff were prime motivators for participation. Unstable electricity supply (required to run the trap's fan), insufficient personal finances (to buy electricity and phone credit), and inconvenience were identified as barriers to sustained participation. CONCLUSIONS: While there are challenges to address, our findings suggest that citizen science offers an opportunity to overcome the human resource constraints that conspire to limit health authorities' capacity to monitor arboviral vectors across populations. We note that the success of citizen science-based surveillance is dependent on the appropriate selection of equipment and participants, and the quality of engagement and support provided.


Assuntos
Arbovírus , Ciência do Cidadão , Animais , Humanos , Melanesia/epidemiologia , Ilhas do Pacífico , Projetos Piloto
2.
Malar J ; 17(1): 381, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348161

RESUMO

BACKGROUND: Malaria remains a challenge in Solomon Islands, despite government efforts to implement a coordinated control programme. This programme resulted in a dramatic decrease in the number of cases and mortality however, malaria incidence remains high in the three most populated provinces. Anopheles farauti is the primary malaria vector and a better understanding of the spatial patterns parasite transmission is required in order to implement effective control measures. Previous entomological studies provide information on the ecological preferences of An. farauti but this information has never before been gathered and "translated" in useful tools as maps that provide information at both the national level and at the scale of villages, thus enabling local targeted control measures. METHODS: A literature review and consultation with entomology experts were used to determine and select environmental preferences of An. farauti. Remote sensing images were processed to translate these preferences into geolocated information to allow them to be used as the basis for a Transmission Suitability Index (TSI). Validation was developed from independent previous entomological studies with georeferenced locations of An. farauti. Then, TSI was autoscaled to ten classes for mapping. RESULTS: Key environmental preferences for the An. farauti were: distance to coastline, elevation, and availability of water sources. Based on these variables, a model was developed to provide a TSI. This TSI was developed using GIS and remote sensing image processing, resulting in maps and GIS raster layer for all the eight provinces and Honiara City at a 250 m spatial resolution. For a TSI ranging from 0 as not suitable to 13 as most suitable, all the previous collections of An. farauti had mean TSI value between 9 and 11 and were significantly higher than where the vector was searched for and absent. Resulting maps were provided after autoscaling the TSI into ten classes from 0 to 9 for visual clarity. CONCLUSIONS: The TSI model developed here provides useful predictions of likely malaria transmission larval sources based on the environmental preferences of the mosquito, An. farauti. These predictions can provide sufficient lead-time for agencies to target malaria prevention and control measures and can assist with effective deployment of limited resources. As the model is built on the known environmental preferences of An. farauti, the model should be completed and updated as soon as new information is available. Because the model did not include any other malaria transmission factors such as care availability, diagnostic time, treatment, prevention, and entomological parameters other than the ecological preferences neither, our suitability mapping represents the upper bound of transmission areas. The results of this study can now being used as the basis of a malaria monitoring system which has been jointly implemented by the Solomon Islands National Vector Borne Disease Control Programme, the Solomon Islands Meteorological Services and the Australian Bureau of Meteorology. The TSI model development method can be applied to other regions of the world where this mosquito occurs and could be adapted for other species.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Controle de Doenças Transmissíveis/métodos , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Plasmodium/fisiologia , Animais , Anopheles/crescimento & desenvolvimento , Sistemas de Informação Geográfica , Mapeamento Geográfico , Humanos , Larva/fisiologia , Melanesia , Mosquitos Vetores/crescimento & desenvolvimento
3.
Malar J ; 17(1): 431, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30453973

RESUMO

Following publication of the original article [1], one of the authors flagged that the images for Figs. 2 and 3 were swapped in the published article-Fig. 2 had the image meant for Fig. 3 and vice versa.

4.
Malar J ; 16(1): 472, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162098

RESUMO

BACKGROUND: Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. METHODS: Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. RESULTS: Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R2 skill scores. A highly significant negative correlation (R = - 0.86, R2 = 0.74, p < 0.05, n = 14) was found between October and December rainfall at Honiara and CMT in northern Guadalcanal for the subsequent January-June. This indicates that drier October-December periods are followed by higher malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria transmission, respectively. CONCLUSION: This study demonstrated that rainfall provides the best predictor of malaria transmission in North Guadalcanal. This relationship is thought to be underpinned by the unique hydrological conditions in northern Guadalcanal which allow sandbars to form across the mouths of estuaries which act to develop or increase stagnant brackish marshes in low rainfall periods. These are ideal habitats for the main mosquito vector, Anopheles farauti. High rainfall accumulations result in the flushing of these habitats, reducing their viability. The results of this study are now being used as the basis of a malaria early warning system which has been jointly implemented by the SIMS, NVBDCP and the Australian Bureau of Meteorology.


Assuntos
Anopheles/fisiologia , Mudança Climática , Clima , Monitoramento Ambiental/métodos , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Animais , Melanesia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA