Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Immunology ; 165(3): 355-368, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964126

RESUMO

Mucositis is a major clinical complication associated with cancer treatment and may limit the benefit of chemotherapy. Leukocytes and inflammatory mediators have been extensively associated with mucositis severity. However, the role of eosinophils in the pathophysiology of chemotherapy-induced mucositis remains to be elucidated. Here, using GATA-1-deficient mice, we investigated the role of eosinophils in intestinal mucositis. There was marked accumulation of eosinophils in mice given irinotecan and eosinophil ablation inhibited intestinal mucositis. Treatment with Evasin-4, a chemokine receptor antagonist, reduced the recruitment of eosinophils and decreased irinotecan-induced mucositis. Importantly, Evasin-4 did not interfere negatively with the antitumour effects of irinotecan. Evasin-4 was of benefit for mice given high doses of irinotecan once Evasin-4-treated mice presented delayed mortality. Altogether, our findings suggest that Evasin-4 may have significant mucosal-protective effects in the context of antineoplastic chemotherapy and may, therefore, be useful in combination with anticancer treatment in cancer patients.


Assuntos
Antineoplásicos , Mucosite , Animais , Antineoplásicos/uso terapêutico , Camptotecina/efeitos adversos , Eosinófilos/patologia , Humanos , Mucosa Intestinal/patologia , Irinotecano/efeitos adversos , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/patologia
2.
Cell Microbiol ; 22(6): e13179, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017324

RESUMO

Cryptococcus gattii (Cg) is one of the agents of cryptococcosis, a severe systemic mycosis with a higher prevalence in men than women, but the influence of the female sex hormone, 17-ß-estradiol (E2), on cryptococcosis remains unclear. Our study shows that female mice presented delayed mortality, increased neutrophil recruitment in bronchoalveolar lavage fluid, and reduced fungal load after 24 hr of infection compared to male and ovariectomised female mice (OVX). E2 replacement restored OVX female survival. Female macrophages have more efficient fungicidal activity, which was increased by E2 and reversed by the antagonist of G-protein-coupled oestrogen receptor (GPER), which negatively modulates PI3K activation. Furthermore, E2 induces a reduction in Cg cell diameter, cell charge, and antioxidant peroxidase activity. In conclusion, female mice present improved control of Cg infection, and GPER is important for E2 modulation of the female response.


Assuntos
Criptococose/tratamento farmacológico , Cryptococcus gattii/efeitos dos fármacos , Estradiol/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Macrófagos/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Animais , Antifúngicos/farmacologia , Antioxidantes , Criptococose/imunologia , Modelos Animais de Doenças , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Immunol ; 198(10): 4096-4106, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28424241

RESUMO

The indigenous intestinal microbiota is frequently considered an additional major organ of the human body and exerts profound immunomodulating activities. Germ-free (GF) mice display a significantly different inflammatory responsiveness pattern compared with conventional (CV) mice, and this was dubbed a "hyporesponsive phenotype." Taking into account that the deposition of immune complexes is a major event in acute inflammation and that GF mice have a distinct Ig repertoire and B cell activity, we aimed to evaluate whether this altered Ig repertoire interferes with the inflammatory responsiveness of GF mice. We found that serum transfer from CV naive mice was capable of reversing the inflammatory hyporesponsiveness of GF mice in sterile inflammatory injury induced by intestinal ischemia and reperfusion, as well as in a model of lung infection by Klebsiella pneumoniae Transferring serum from Ig-deficient mice to GF animals did not alter their response to inflammatory insult; however, injecting purified Abs from CV animals restored inflammatory responsiveness in GF mice, suggesting that natural Abs present in serum were responsible for altering GF responsiveness. Mechanistically, injection of serum and Ig from CV mice into GF animals restored IgG deposition, leukocyte influx, NF-κB activation, and proinflammatory gene expression in inflamed tissues and concomitantly downregulated annexin-1 and IL-10 production. Thus, our data show that microbiota-induced natural Abs are pivotal for host inflammatory responsiveness to sterile and infectious insults.


Assuntos
Anticorpos/imunologia , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Inflamação/imunologia , Intestinos/imunologia , Animais , Anexinas/imunologia , Anticorpos/administração & dosagem , Linfócitos B/imunologia , Regulação da Expressão Gênica , Humanos , Interleucina-10/imunologia , Intestinos/microbiologia , Intestinos/patologia , Isquemia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , NF-kappa B/genética
4.
Immunology ; 155(4): 477-490, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30098206

RESUMO

The excessive inflammation often present in patients with severe dengue infection is considered both a hallmark of disease and a target for potential treatments. Interleukin-33 (IL-33) is a pleiotropic cytokine with pro-inflammatory effects whose role in dengue has not been fully elucidated. We demonstrate that IL-33 plays a disease-exacerbating role during experimental dengue infection in immunocompetent mice. Mice infected with dengue virus serotype 2 (DENV2) produced high levels of IL-33. DENV2-infected mice treated with recombinant IL-33 developed markedly more severe disease compared with untreated mice as assessed by mortality, granulocytosis, liver damage and pro-inflammatory cytokine production. Conversely, ST2-/- mice (deficient in IL-33 receptor) infected with DENV2 developed significantly less severe disease compared with wild-type mice. Furthermore, the increased disease severity and the accompanying pathology induced by IL-33 during dengue infection were reversed by the simultaneous treatment with a CXCR2 receptor antagonist (DF2156A). Together, these results indicate that IL-33 plays a disease-exacerbating role in experimental dengue infection, probably driven by CXCR2-expressing cells, leading to elevated pro-inflammatory response-mediated pathology. Our results also indicate that IL-33 is a potential therapeutic target for dengue infection.


Assuntos
Vírus da Dengue/imunologia , Interleucina-33/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores , Proteínas Recombinantes/farmacologia , Animais , Dengue/imunologia , Dengue/virologia , Progressão da Doença , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sulfonamidas/farmacologia
5.
Proc Natl Acad Sci U S A ; 112(23): 7231-6, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25995365

RESUMO

The response to an innate immune challenge is conditioned by the time of day, but the molecular basis for this remains unclear. In myeloid cells, there is a temporal regulation to induction by lipopolysaccharide (LPS) of the proinflammatory microRNA miR-155 that correlates inversely with levels of BMAL1. BMAL1 in the myeloid lineage inhibits activation of NF-κB and miR-155 induction and protects mice from LPS-induced sepsis. Bmal1 has two miR-155-binding sites in its 3'-UTR, and, in response to LPS, miR-155 binds to these two target sites, leading to suppression of Bmal1 mRNA and protein in mice and humans. miR-155 deletion perturbs circadian function, gives rise to a shorter circadian day, and ablates the circadian effect on cytokine responses to LPS. Thus, the molecular clock controls miR-155 induction that can repress BMAL1 directly. This leads to an innate immune response that is variably responsive to challenges across the circadian day.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Ritmo Circadiano , Imunidade Inata , Macrófagos/imunologia , MicroRNAs/fisiologia , Regiões 3' não Traduzidas , Fatores de Transcrição ARNTL/genética , Tecido Adiposo/metabolismo , Animais , Citocinas/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo
6.
J Immunol ; 193(4): 1911-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015823

RESUMO

TLR4 interactor with leucine-rich repeats (TRIL) is a brain-enriched accessory protein that is important in TLR3 and TLR4 signaling. In this study, we generated Tril(-/-) mice and examined TLR responses in vitro and in vivo. We found a role for TRIL in both TLR4 and TLR3 signaling in mixed glial cells, consistent with the high level of expression of TRIL in these cells. We also found that TRIL is a modulator of the innate immune response to LPS challenge and Escherichia coli infection in vivo. Tril(-/-) mice produce lower levels of multiple proinflammatory cytokines and chemokines specifically within the brain after E. coli and LPS challenge. Collectively, these data uncover TRIL as a mediator of innate immune responses within the brain, where it enhances neuronal cytokine responses to infection.


Assuntos
Encéfalo/imunologia , Proteínas de Transporte/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Células Cultivadas , Quimiocina CCL5/biossíntese , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-6/biossíntese , Lipopolissacarídeos , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/imunologia , Poli I-C/farmacologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese
7.
Immunol Rev ; 245(1): 250-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22168425

RESUMO

Mammals are subject to colonization by an astronomical number of mutualistic and commensal microorganisms on their environmental exposed surfaces. These mutualistic species build up a complex community, called the indigenous microbiota, which aid their hosts in several physiological activities. In this review, we show that the transition between a non-colonized and a colonized state is associated with modification on the pattern of host inflammatory and behavioral responsiveness. There is a shift from innate anti-inflammatory cytokine production to efficient release of proinflammatory mediators and rapid mobilization of leukocytes upon infection or other stimuli. In addition, host responses to hypernociceptive and stressful stimuli are modulated by indigenous microbiota, partly due to the altered pattern of innate and acquired immune responsiveness of the non-colonized host. These altered responses ultimately lead to significant alteration in host behavior to environmental threats. Therefore, host colonization by indigenous microbiota modifies the way the host perceives and reacts to environmental stimuli, improving resilience of the entire host-microorganism consortium to environmental stresses.


Assuntos
Infecções Bacterianas/imunologia , Infecções Bacterianas/psicologia , Comportamento , Imunidade Inata , Nociceptores/imunologia , Estresse Fisiológico/imunologia , Adaptação Biológica , Animais , Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação/imunologia
8.
Immunology ; 146(3): 349-58, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26301993

RESUMO

Development of inflammatory diseases, such as metabolic syndrome and cancer, is prevalent in individuals that encounter continuous disruption of their internal clock. Further, daily oscillations in susceptibility to infection as well as a multitude of other immunological processes have been described. Much progress has been made and various mechanisms have been proposed to explain circadian variations in immunity; yet much is still unknown. Understanding the crosstalk between the circadian and the immune systems will allow us to manipulate clock outputs to prevent and treat inflammatory diseases in individuals at risk. This review briefly summarizes current knowledge about circadian rhythms and their role in the immune system and highlights progress and challenges in chrono-immunological research.


Assuntos
Ritmo Circadiano/imunologia , Sistema Imunitário/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/imunologia , Fatores de Transcrição ARNTL/fisiologia , Animais , Relógios Circadianos/genética , Relógios Circadianos/imunologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Citocinas/biossíntese , Humanos , Memória Imunológica , Mamíferos/genética , Mamíferos/imunologia , Mamíferos/fisiologia , Modelos Imunológicos , Fenômenos Fisiológicos da Nutrição , Sono/imunologia , Sono/fisiologia
9.
Immunology ; 145(4): 583-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25939314

RESUMO

Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.


Assuntos
Vírus da Dengue/fisiologia , Dengue/imunologia , Macrófagos/imunologia , Receptores CCR5/imunologia , Replicação Viral/imunologia , Animais , Sequência de Bases , Dengue/tratamento farmacológico , Dengue/genética , Humanos , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Receptores CCR5/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
10.
Am J Pathol ; 184(7): 2023-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24952429

RESUMO

Irinotecan is a useful chemotherapeutic for the treatment of various cancers. Irinotecan treatment is associated with mucositis, which clearly limits the use of the drug. Mechanisms that account for mucositis are only partially known. This study assessed mechanisms and the role of inflammasome activation in irinotecan-induced mucositis. Mucositis in mice was induced by irinotecan injection in C57BL/6 wild-type, gp91phox(-/-), il-18(-/-), casp-1(-/-), and asc(-/-) mice once a day for 4 consecutive days. In some experiments, mice received apocynin to inhibit NADPH oxidase (NOX), IL-1 receptor antagonist, or IL-18 binding protein to prevent activation of IL-1 and IL-18 receptors, respectively. Mice were euthanized 7 days after the beginning of irinotecan treatment, and small intestines were collected for analysis. Irinotecan treatment resulted in increased IL-1ß and IL-18 production in ileum and NOX-2-dependent oxidative stress. gp91phox(-/-) and apocynin-treated mice had diminished oxidative stress and less severe mucositis. Furthermore, treatment with apocynin decreased caspase-1 activation and IL-1ß and IL-18 production in the ileum. asc(-/-) and casp-1(-/-) mice also had less intestinal injury and decreased IL-1ß and IL-18 production. Finally, both the absence of IL-18 and IL-1ß resulted in reduced inflammatory response and attenuated intestinal injury. NOX-2-derived oxidative stress mediates inflammasome activation and inflammasome-dependent production of IL-1ß and IL-18, which mediate tissue injury during irinotecan-induced mucositis in mice.


Assuntos
Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Mucosite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Caspase 1/metabolismo , Íleo/metabolismo , Íleo/patologia , Irinotecano , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosite/induzido quimicamente , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Estresse Oxidativo
11.
Eur J Immunol ; 43(6): 1529-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23505056

RESUMO

Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. IL-22 and IL-17A are key cytokines in several infectious and inflammatory diseases. We have assessed the contribution of IL-22 and IL-17A in the pathogenesis of experimental dengue infection using a mouse-adapted DENV serotype 2 strain (P23085) that causes a disease that resembles severe dengue in humans. We show that IL-22 and IL-17A are produced upon DENV-2 infection in immune-competent mice. Infected IL-22(-/-) mice had increased lethality, neutrophil accumulation and pro-inflammatory cytokines in tissues, notably IL-17A. Viral load was increased in spleen and liver of infected IL-22(-/-) mice. There was also more severe liver injury, as seen by increased transaminases levels and tissue histopathology. γδ T cells and NK cells are sources of IL-17A and IL-22, respectively, in liver and spleen. We also show that DENV-infected HepG2 cells treated with rhIL-22 had reduced cell death and decreased IL-6 production. IL-17RA(-/-) mice were protected upon infection and IL-17A-neutralizing-Ab-treatment partially reversed the phenotype observed in IL-22(-/-) -infected mice. We suggest that disrupting the balance between IL-22 and IL-17A levels may represent an important strategy to reduce inflammation and tissue injury associated with severe dengue infection.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Fígado/metabolismo , Neutrófilos/imunologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células Hep G2 , Humanos , Inflamação/genética , Interleucina-17/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/genética , Interleucinas/imunologia , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/virologia , Receptores de Interleucina-17/genética , Carga Viral/genética , Interleucina 22
12.
Med Microbiol Immunol ; 203(4): 231-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24723052

RESUMO

Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1-4). Epidemiologic and observational studies demonstrate that the majority of severe dengue cases, dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), occurs predominantly in either individuals with cross-reactive immunity following a secondary heterologous infection or in infants with primary DENV infections born from dengue-immune mothers, suggesting that B-cell-mediated and antibody responses impact on disease evolution. We demonstrate here that B cells play a pivotal role in host responses against primary DENV infection in mice. After infection, µMT(-/-) mice showed increased viral loads followed by severe disease manifestation characterized by intense thrombocytopenia, hemoconcentration, cytokine production and massive liver damage that culminated in death. In addition, we show that poly and monoclonal anti-DENV-specific antibodies can sufficiently increase viral replication through a suppression of early innate antiviral responses and enhance disease manifestation, so that a mostly non-lethal illness becomes a fatal disease resembling human DHF/DSS. Finally, treatment with intravenous immunoglobulin containing anti-DENV antibodies confirmed the potential enhancing capacity of subneutralizing antibodies to mediate virus infection and replication and induce severe disease manifestation of DENV-infected mice. Thus, our results show that humoral responses unleashed during DENV infections can exert protective or pathological outcomes and provide insight into the pathogenesis of this important human pathogen.


Assuntos
Anticorpos Facilitadores , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/patologia , Imunidade Inata , Animais , Linfócitos B/imunologia , Citocinas/sangue , Morte , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombocitopenia , Carga Viral
13.
J Immunol ; 188(3): 1411-20, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22210917

RESUMO

Mammals are colonized by an astronomical number of commensal microorganisms on their environmental exposed surfaces. These symbiotic species build up a complex community that aids their hosts in several physiological activities. We have shown that lack of intestinal microbiota is accompanied by a state of active IL-10-mediated inflammatory hyporesponsiveness. The present study investigated whether the germfree state and its hyporesponsive phenotype alter host resistance to an infectious bacterial insult. Experiments performed in germfree mice infected with Klebsiella pneumoniae showed that these animals are drastically susceptible to bacterial infection in an IL-10-dependent manner. In germfree mice, IL-10 restrains proinflammatory mediator production and neutrophil recruitment and favors pathogen growth and dissemination. Germfree mice were resistant to LPS treatment. However, priming of these animals with several TLR agonists recovered their inflammatory responsiveness to sterile injury. LPS pretreatment also rendered germfree mice resistant to pulmonary K. pneumoniae infection, abrogated IL-10 production, and restored TNF-α and CXCL1 production and neutrophil mobilization into lungs of infected germfree mice. This effective inflammatory response mounted by LPS-treated germfree mice resulted in bacterial clearance and enhanced survival upon infection. Therefore, host colonization by indigenous microbiota alters the way the host reacts to environmental infectious stimuli, probably through activation of TLR-dependent pathways. Symbiotic gut colonization enables proper inflammatory response to harmful insults to the host, and increases resilience of the entire mammal-microbiota consortium to environmental pressures.


Assuntos
Inflamação/etiologia , Infecções por Klebsiella/imunologia , Receptores Toll-Like/metabolismo , Animais , Vida Livre de Germes , Interações Hospedeiro-Patógeno/imunologia , Interleucina-10/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Klebsiella pneumoniae , Metagenoma/imunologia , Camundongos , Receptores Toll-Like/fisiologia
14.
Arthritis Rheum ; 64(2): 474-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21952942

RESUMO

OBJECTIVE: Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)-derived leukotriene B(4) (LTB(4) ) in driving tissue inflammation and hypernociception in a murine model of gout. METHODS: Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1ß (IL-1ß), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB(4) activity, cytokine (IL-1ß, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. RESULTS: Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophil-dependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1ß/MyD88-dependent manner. LTB(4) was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1ß production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB(4) after MSU crystal injection, and LTB(4) was relevant in the MSU crystal-induced maturation of IL-1ß. Mechanistically, LTB(4) drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. CONCLUSION: These results reveal the role of the NLRP3 inflammasome in mediating MSU crystal-induced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB(4) in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.


Assuntos
Proteínas de Transporte/metabolismo , Gota/metabolismo , Hiperalgesia/metabolismo , Inflamassomos/metabolismo , Leucotrieno B4/metabolismo , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Animais , Caspase 1/metabolismo , Citocinas/metabolismo , Gota/induzido quimicamente , Gota/imunologia , Hiperalgesia/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Leucotrieno B4/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Ácido Úrico/farmacologia
15.
PLoS Pathog ; 6(11): e1001171, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21079759

RESUMO

Influenza A virus causes annual epidemics which affect millions of people worldwide. A recent Influenza pandemic brought new awareness over the health impact of the disease. It is thought that a severe inflammatory response against the virus contributes to disease severity and death. Therefore, modulating the effects of inflammatory mediators may represent a new therapy against Influenza infection. Platelet activating factor (PAF) receptor (PAFR) deficient mice were used to evaluate the role of the gene in a model of experimental infection with Influenza A/WSN/33 H1N1 or a reassortant Influenza A H3N1 subtype. The following parameters were evaluated: lethality, cell recruitment to the airways, lung pathology, viral titers and cytokine levels in lungs. The PAFR antagonist PCA4248 was also used after the onset of flu symptoms. Absence or antagonism of PAFR caused significant protection against flu-associated lethality and lung injury. Protection was correlated with decreased neutrophil recruitment, lung edema, vascular permeability and injury. There was no increase of viral load and greater recruitment of NK1.1(+) cells. Antibody responses were similar in WT and PAFR-deficient mice and animals were protected from re-infection. Influenza infection induces the enzyme that synthesizes PAF, lyso-PAF acetyltransferase, an effect linked to activation of TLR7/8. Therefore, it is suggested that PAFR is a disease-associated gene and plays an important role in driving neutrophil influx and lung damage after infection of mice with two subtypes of Influenza A. Further studies should investigate whether targeting PAFR may be useful to reduce lung pathology associated with Influenza A virus infection in humans.


Assuntos
Apoptose , Vírus da Influenza A Subtipo H1N1/patogenicidade , Lesão Pulmonar/metabolismo , Lesão Pulmonar/virologia , Infecções por Orthomyxoviridae/prevenção & controle , Glicoproteínas da Membrana de Plaquetas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Western Blotting , Galinhas , Di-Hidropiridinas/farmacologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Lesão Pulmonar/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Carga Viral
16.
Br J Nutr ; 108(10): 1829-38, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22273003

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease that mainly targets the synovial membrane, cartilage and bone. It affects 1 % of the population and is associated with significant morbidity and increased mortality. Se is an essential trace element with antioxidant properties and the ability to modulate the immune responses. Selemax® is an inactive yeast (Saccharomyces cerevisiae) enriched with organic Se. The aim of the present study was to investigate the effects of Selemax® administration in models of an antigen-induced arthritis (AIA) in C57BL/6 mice, and of an adjuvant-induced arthritis (AdIA) in Holtzman rats. As control, the animals were treated with the same inactivated yeast species that was not enriched for Se. In the AIA model, treatment with different doses of Selemax® (0·01, 0·1, 1 and 10 % added to food) significantly decreased the number of inflammatory cells recruited to the knee cavity, essentially by reducing the number of neutrophils. Levels of proinflammatory cytokines, including TNF-α, IL-1ß and chemokine (C-X-C motif) ligand 1/keratinocyte chemoattractant (CXCL1/KC), were also reduced in the peri-articular tissue of mice treated with Selemax® at the tested dose (1 %). In the AdIA model in rats, Selemax® treatment decreased paw oedema and hypernociception. This reduction was associated with inhibition of the influx of proinflammatory cells. Therefore, treatment with Selemax® is associated with amelioration of several inflammatory and functional parameters in models of arthritis, suggesting that this Se-enriched yeast should be evaluated further in patients with RA.


Assuntos
Artrite/induzido quimicamente , Artrite/tratamento farmacológico , Suplementos Nutricionais , Selênio/administração & dosagem , Selênio/uso terapêutico , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Metaloporfirinas , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Soroalbumina Bovina/toxicidade , Leveduras
17.
J Immunol ; 184(5): 2646-54, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20100934

RESUMO

CCL3 is a protein of the CC chemokine family known to be important for T cell recruitment in inflammatory diseases. The aim of the current study was to evaluate the effects and putative mechanism of action of evasin-1, a novel CCL3-binding protein, in the pathogenesis of acute graft-versus-host disease (GVHD). GVHD was induced by the transplantation of splenocytes from C57BL/6J to B6D2F1 mice. Treatment of recipient mice with evasin-1 prevented mortality associated with GVHD. This was correlated with reduced weight loss and clinical disease severity. Analysis of the small intestine showed that evasin-1 treatment reduced the histopathological score and decreased levels of IFN-gamma and CCL5. Mechanistically, evasin-1 treatment reduced the number of CD4(+) and CD8(+) T cells infiltrating the small intestine, as assessed by immunohistochemistry, and the adhesion of leukocytes to intestinal venules of recipient mice, as assessed by intravital microscopy. Evasin-1 was also able to decrease liver damage, as seen by reduction of inflammatory infiltrate and IFN-gamma levels. Treatment with evasin-1 did not interfere with graft-versus-leukemia. Altogether, our studies demonstrate that CCL3 plays a major role in mediating GVHD, but not graft-versus-leukemia in mice and suggest that blockade of CCL3 with evasin-1 has potential therapeutic application in patients undergoing bone marrow transplantation.


Assuntos
Quimiocina CCL3/deficiência , Doença Enxerto-Hospedeiro/metabolismo , Proteínas Inflamatórias de Macrófagos/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Transplante de Células , Quimiocina CCL3/genética , Quimiocina CCL5/metabolismo , Dexametasona/farmacologia , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia/efeitos dos fármacos , Imuno-Histoquímica , Interferon gama/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Proteínas Inflamatórias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos , Camundongos Transgênicos , Baço/citologia
18.
Proc Natl Acad Sci U S A ; 106(33): 14138-43, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666557

RESUMO

Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.


Assuntos
Vírus da Dengue/metabolismo , Dengue/metabolismo , Dengue/virologia , Glicoproteínas da Membrana de Plaquetas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Aedes , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Linhagem Celular , Citocinas/metabolismo , Di-Hidropiridinas/farmacologia , Modelos Animais de Doenças , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Carga Viral
19.
Front Cell Infect Microbiol ; 12: 811474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548467

RESUMO

Cryptococcosis is an invasive mycosis caused by Cryptococcus spp. that affects the lungs and the central nervous system (CNS). Due to the severity of the disease, it may occur concomitantly with other pathogens, as a coinfection. Pseudomonas aeruginosa (Pa), an opportunistic pathogen, can also cause pneumonia. In this work, we studied the interaction of C. gattii (Cg) and Pa, both in vitro and in vivo. Pa reduced growth of Cg by the secretion of inhibitory molecules in vitro. Macrophages previously stimulated with Pa presented increased fungicidal activity. In vivo, previous Pa infection reduced morbidity and delayed the lethality due to cryptococcosis. This phenotype was correlated with the decreased fungal burden in the lungs and brain, showing a delay of Cg translocation to the CNS. Also, there was increased production of IL-1ß, CXCL-1, and IL-10, together with the influx of iNOS-positive macrophages and neutrophils to the lungs. Altogether, Pa turned the lung into a hostile environment to the growth of a secondary pathogen, making it difficult for the fungus to translocate to the CNS. Further, iNOS inhibition reverted the Pa protective phenotype, suggesting its important role in the coinfection. Altogether, the primary Pa infection leads to balanced pro-inflammatory and anti-inflammatory responses during Cg infection. This response provided better control of cryptococcosis and was decisive for the mild evolution of the disease and prolonged survival of coinfected mice in a mechanism dependent on iNOS.


Assuntos
Coinfecção , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Infecções por Pseudomonas , Animais , Criptococose/microbiologia , Camundongos , Fagocitose
20.
FASEB J ; 24(1): 218-28, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19776337

RESUMO

Dengue fever is an emerging viral disease transmitted by arthropods to humans in tropical countries. Dengue hemorrhagic fever (DHF) is escalating in frequency and mortality rates. Here we studied the involvement of macrophage migration inhibitory factor (MIF) in dengue virus (DENV) infection and its pathogenesis. Patients with DHF had elevated plasma concentrations of MIF. Both leukocytes from these patients and macrophages from healthy donors infected in vitro with DENV showed a substantial amount of MIF within lipid droplets. The secretion of MIF by macrophages and hepatocytes required a productive infection and occurred without an increase in gene transcription or cell death, thus indicating active secretion from preformed stocks. In vivo infection of wild-type and mif-deficient (Mif(-/-)) mice demonstrated a role of MIF in dengue pathogenesis. Clinical disease was less severe in Mif(-/-) mice, and they exhibited a significant delay in lethality, lower viremia, and lower viral load in the spleen than wild-type mice. This reduction in all parameters of severity on DENV infection in Mif(-/-) mice correlated with reduced proinflammatory cytokine concentrations. These results demonstrated the contribution of MIF to the pathogenesis of dengue and pointed to a possible beneficial role of neutralizing MIF as an adjunctive therapeutic approach to treat the severe forms of the disease.


Assuntos
Dengue/etiologia , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Animais , Sequência de Bases , Citocinas/biossíntese , Citocinas/genética , Primers do DNA/genética , Dengue/sangue , Dengue/genética , Dengue/fisiopatologia , Dengue/terapia , Vírus da Dengue/patogenicidade , Modelos Animais de Doenças , Expressão Gênica , Hepatócitos/fisiologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Oxirredutases Intramoleculares/sangue , Oxirredutases Intramoleculares/deficiência , Oxirredutases Intramoleculares/genética , Leucócitos/metabolismo , Metabolismo dos Lipídeos , Fatores Inibidores da Migração de Macrófagos/sangue , Fatores Inibidores da Migração de Macrófagos/deficiência , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/fisiologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estudos Prospectivos , Dengue Grave/etiologia , Dengue Grave/genética , Dengue Grave/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA