Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2303978120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963252

RESUMO

Robust high-throughput assays are crucial for the effective functioning of a drug discovery pipeline. Herein, we report the development of Invasion-Block, an automated high-content screening platform for measuring invadopodia-mediated matrix degradation as a readout for the invasive capacity of cancer cells. Combined with Smoothen-Mask and Reveal, a custom-designed, automated image analysis pipeline, this platform allowed us to evaluate melanoma cell invasion capacity posttreatment with two libraries of compounds comprising 3840 U.S. Food and Drug Administration (FDA)-approved drugs with well-characterized safety and bioavailability profiles in humans as well as a kinase inhibitor library comprising 210 biologically active compounds. We found that Abl/Src, PKC, PI3K, and Ataxia-telangiectasia mutated (ATM) kinase inhibitors significantly reduced melanoma cell invadopodia formation and cell invasion. Abrogation of ATM expression in melanoma cells via CRISPR-mediated gene knockout reduced 3D invasion in vitro as well as spontaneous lymph node metastasis in vivo. Together, this study established a rapid screening assay coupled with a customized image-analysis pipeline for the identification of antimetastatic drugs. Our study implicates that ATM may serve as a potent therapeutic target for the treatment of melanoma cell spread in patients.


Assuntos
Antineoplásicos , Ataxia Telangiectasia , Melanoma , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
Blood ; 141(11): 1316-1321, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36493342

RESUMO

Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are clonal disorders driven by progressively acquired somatic mutations in hematopoietic stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS and CMML. Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated HSCs. However, in patients with established disease it is unclear whether (1) HSCs with multiple mutations progress through differentiation with comparable frequency to their less mutated counterparts or (2) improvements in peripheral blood counts following HMA therapy are driven by residual wild-type HSCs or by clones with particular combinations of mutations. To address these questions, the somatic mutations of individual stem cells, progenitors (common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutrophils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-cell genotyping, followed by bulk analysis in immature and mature cells before and after AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.


Assuntos
Leucemia Mielomonocítica Crônica , Síndromes Mielodisplásicas , Humanos , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Células-Tronco Hematopoéticas/metabolismo , Monócitos , Células Clonais
3.
Br J Cancer ; 122(5): 680-691, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31919402

RESUMO

BACKGROUND: Predictive preclinical models play an important role in the assessment of new treatment strategies and as avatar models for personalised medicine; however, reliable and timely model generation is challenging. We investigated the feasibility of establishing patient-derived xenograft (PDX) models of high-risk neuroblastoma from a range of tumour-bearing patient materials and assessed approaches to improve engraftment efficiency. METHODS: PDX model development was attempted in NSG mice by using tumour materials from 12 patients, including primary and metastatic solid tumour samples, bone marrow, pleural fluid and residual cells from cytogenetic analysis. Subcutaneous, intramuscular and orthotopic engraftment were directly compared for three patients. RESULTS: PDX models were established for 44% (4/9) of patients at diagnosis and 100% (5/5) at relapse. In one case, attempted engraftment from pleural fluid resulted in an EBV-associated atypical lymphoid proliferation. Xenogeneic graft versus host disease was observed with attempted engraftment from lymph node and bone marrow tumour samples but could be prevented by T-cell depletion. Orthotopic engraftment was more efficient than subcutaneous or intramuscular engraftment. CONCLUSIONS: High-risk neuroblastoma PDX models can be reliably established from diverse sample types. Orthotopic implantation allows more rapid model development, increasing the likelihood of developing an avatar model within a clinically useful timeframe.


Assuntos
Transplante de Neoplasias/métodos , Neuroblastoma/patologia , Neuroblastoma/terapia , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Estudos de Viabilidade , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Neuroblastoma/genética , Distribuição Aleatória , Linfócitos T/imunologia , Linfócitos T/patologia
4.
Bioorg Med Chem ; 22(1): 105-15, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332654

RESUMO

A series of 3-aryl-5,7-dimethoxyquinolin-4-ones 8 and 3-aryl-5,7-dimethoxy-2,3-dihydroquinolin-4-ones 13 were synthesized in good yields. Demethylation under a range of conditions afforded the corresponding 5-hydroxy and 5,7-dihydroxy derivatives. Biological evaluation against a range of cancer cells lines showed that the quinolin-4-one scaffold was more cytotoxic than the reduced 2,3-dihydroquinolin-4-one scaffold. The most active monohydroxy compound 15f demonstrated 85.9-99% reduction in cell viability against the cell lines tested.


Assuntos
Quinolonas/síntese química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Quinolonas/química , Relação Estrutura-Atividade
5.
Cancer Med ; 12(4): 4455-4471, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35946957

RESUMO

Non-Small Cell Lung Carcinoma (NSCLC) remains a leading cause of cancer death. Resistance to therapy is a significant problem, highlighting the need to find new ways of sensitising tumour cells to therapeutic agents. ßIII-tubulin is associated with aggressive tumours and chemotherapy resistance in a range of cancers including NSCLC. ßIII-tubulin expression has been shown to impact kinase signalling in NSCLC cells. Here, we sought to exploit this interaction by identifying co-activity between ßIII-tubulin suppression and small-molecule kinase inhibitors. To achieve this, a forced-genetics approach combined with a high-throughput drug screen was used. We show that activity of the multi-kinase inhibitor Amuvatinib (MP-470) is enhanced by ßIII-tubulin suppression in independent NSCLC cell lines. We also show that this compound significantly inhibits cell proliferation among ßIII-tubulin knockdown cells expressing the receptor tyrosine kinase c-Met. Together, our results highlight that ßIII-tubulin suppression combined with targeting specific receptor tyrosine kinases may represent a novel therapeutic approach for otherwise difficult-to-treat lung carcinomas.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
6.
Front Nutr ; 10: 1119274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960209

RESUMO

Introduction: Despite strong epidemiological evidence that dietary factors modulate cancer risk, cancer control through dietary intervention has been a largely intractable goal for over sixty years. The effect of tumour genotype on synergy is largely unexplored. Methods: The effect of seven dietary phytochemicals, quercetin (0-100 µM), curcumin (0-80 µM), genistein, indole-3-carbinol (I3C), equol, resveratrol and epigallocatechin gallate (EGCG) (each 0-200 µM), alone and in all paired combinations om cell viability of the androgen-responsive, pTEN-null (LNCaP), androgen-independent, pTEN-null (PC-3) or androgen-independent, pTEN-positive (DU145) prostate cancer (PCa) cell lines was determined using a high throughput alamarBlue® assay. Synergy, additivity and antagonism were modelled using Bliss additivism and highest single agent equations. Patterns of maximum synergy were identified by polygonogram analysis. Network pharmacology approaches were used to identify interactions with known PCa protein targets. Results: Synergy was observed with all combinations. In LNCaP and PC-3 cells, I3C mediated maximum synergy with five phytochemicals, while genistein was maximally synergistic with EGCG. In contrast, DU145 cells showed resveratrol-mediated maximum synergy with equol, EGCG and genistein, with I3C mediating maximum synergy with only quercetin and curcumin. Knockdown of pTEN expression in DU145 cells abrogated the synergistic effect of resveratrol without affecting the synergy profile of I3C and quercetin. Discussion: Our study identifies patterns of synergy that are dependent on tumour cell genotype and are independent of androgen signaling but are dependent on pTEN. Despite evident cell-type specificity in both maximally-synergistic combinations and the pathways that phytochemicals modulate, these combinations interact with similar prostate cancer protein targets. Here, we identify an approach that, when coupled with advanced data analysis methods, may suggest optimal dietary phytochemical combinations for individual consumption based on tumour molecular profile.Graphical abstract.

7.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523146

RESUMO

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Criança , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos
8.
Cancers (Basel) ; 13(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805713

RESUMO

Diffuse Intrinsic Pontine Gliomas (DIPGs) are highly aggressive paediatric brain tumours. Currently, irradiation is the only standard treatment, but is palliative in nature and most patients die within 12 months of diagnosis. Novel therapeutic approaches are urgently needed for the treatment of this devastating disease. We have developed non-persistent gold nano-architectures (NAs) functionalised with human serum albumin (HSA) for the delivery of doxorubicin. Doxorubicin has been previously reported to be cytotoxic in DIPG cells. In this study, we have preclinically evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoarchitectures (NAs-HSA-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and doxorubicin-loaded NAs. Colony formation assays demonstrated greater potency of NAs-HSA-Dox on colony formation compared to doxorubicin. Western blot analysis indicated increased apoptotic markers cleaved Parp, cleaved caspase 3 and phosphorylated H2AX in NAs-HSA-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of NAs-HSA-Dox into DIPG neurospheres compared to doxorubicin alone. Despite the potency of the NAs in vitro, treatment of an orthotopic model of DIPG showed no antitumour effect. This disparate outcome may be due to the integrity of the blood-brain barrier and highlights the need to develop therapies to enhance penetration of drugs into DIPG.

9.
Front Oncol ; 11: 779859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127484

RESUMO

Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library containing 3707 approved drugs and pharmacologically active compounds was screened for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type (KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based viability assays. The screen yielded SID7969543, an inhibitor of transcription factor Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7 out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants, without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or peripheral blood mononuclear cells from healthy controls. The compound also significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation, which defines a highly aggressive leukemia subtype that shares common underlying leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment and demonstrated synergy with established chemotherapeutics used in the treatment of high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants further investigation.

10.
Cancer Cytopathol ; 129(10): 805-818, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34043284

RESUMO

BACKGROUND: The development of high-throughput drug screening (HTS) using primary cultures provides a promising, clinically translatable approach to tailoring treatment strategies for patients with cancer. However, this has been challenging for solid tumors because of often limited amounts of tissue available. In most cases, in vitro expansion is required before HTS, which may lead to overgrowth and contamination by non-neoplastic cells. METHODS: In this study, hematoxylin and eosin staining and immunohistochemical staining were performed on 129 cytopathology cases from 95 patients. These cytopathology cases comprised cell block preparations derived from primary tumor specimens or patient-derived xenografts as part of a pediatric precision oncology trial. Cytopathology cases were compared with the morphology and immunohistochemical staining profile of the original tumor. Cases were reported as tumor cells present, equivocal, or tumor cells absent. The HTS results from cytopathologically validated cultures were incorporated into a multidisciplinary tumor board report issued to the treating clinician to guide clinical decision making. RESULTS: On cytopathologic examination, tumor cells were present in 77 of 129 cases (60%) and were absent in 38 of 129 cases (29%), whereas 14 of 129 cases (11%) were equivocal. Cultures that contained tumor cells resembled the tumors from which they were derived. CONCLUSIONS: Cytopathologic examination of tumor cell block preparations is feasible and provides detailed morphologic characterization. Cytopathologic examination is essential for ensuring that samples submitted for HTS contain representative tumor cells and that in vitro drug sensitivity data are clinically translatable.


Assuntos
Neoplasias , Humanos , Imuno-Histoquímica , Oncologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Patologia , Medicina de Precisão
11.
J Inorg Biochem ; 101(3): 396-403, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17197030

RESUMO

Fe(III)-salen (N,N-bis(salicylidene)-ethane-1,2-diimine) complexes of simple hydroxamic acids and the MMP (matrix metalloproteinase) inhibitor marimastat have been evaluated as hypoxia activated drug carriers. The aceto- (aha), propion- (pha), benzohydroxamato (bha), and marimastat complexes were prepared and characterised by single crystal X-ray diffraction and electrochemical analysis. The hydroxamato ligands form a bidentate chelate to Fe(III) with the remaining octahedral coordination sites occupied by the tetradentate salen ligand. Bonding of the hydroxamato ligands is in the typical motif of the majority of Fe(III) complexes in the literature. The reduction potentials of the complexes are of the order of -1300 mV (vs ferrocene/ferrocenium) and show partial reversibility in the re-oxidation waveforms of the cyclic voltammetry scans. This suggests that the Fe-salen carrier system would provide a suitably redox inert framework yet would release the ligands at hypoxic tumour sites upon reduction to the more labile Fe(II) oxidation state. Furthermore, biological testing of the marimastat complex established that these carriers are stable in non-reducing biological environments and would serve to deliver MMP inhibitors to tumour sites intact.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Compostos Férricos/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Inibidores de Metaloproteinases de Matriz , Compostos Organometálicos/administração & dosagem , Pró-Fármacos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Biotransformação , Hipóxia Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Compostos Férricos/química , Compostos Férricos/farmacocinética , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacocinética , Concentração Inibidora 50 , Compostos Organometálicos/química , Compostos Organometálicos/farmacocinética , Oxirredução , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Relação Estrutura-Atividade
12.
PLoS One ; 7(2): e30734, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359551

RESUMO

Aurora kinase inhibitors are new mitosis-targeting drugs currently in clinical trials for the treatment of haematological and solid malignancies. However, knowledge of the molecular factors that influence sensitivity and resistance remains limited. Herein, we developed and characterised an in vitro leukaemia model of resistance to the Aurora B inhibitor ZM447439. Human T-cell acute lymphoblastic leukaemia cells, CCRF-CEM, were selected for resistance in 4 µM ZM447439. CEM/AKB4 cells showed no cross-resistance to tubulin-targeted and DNA-damaging agents, but were hypersensitive to an Aurora kinase A inhibitor. Sequencing revealed a mutation in the Aurora B kinase domain corresponding to a G160E amino acid substitution. Molecular modelling of drug binding in Aurora B containing this mutation suggested that resistance is mediated by the glutamate substitution preventing formation of an active drug-binding motif. Progression of resistance in the more highly selected CEM/AKB8 and CEM/AKB16 cells, derived sequentially from CEM/AKB4 in 8 and 16 µM ZM447439 respectively, was mediated by additional defects. These defects were independent of Aurora B and multi-drug resistance pathways and are associated with reduced apoptosis mostly likely due to reduced inhibition of the catalytic activity of aurora kinase B in the presence of drug. Our findings are important in the context of the use of these new targeted agents in treatment regimes against leukaemia and suggest resistance to therapy may arise through multiple independent mechanisms.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Leucemia de Células T/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Apoptose , Aurora Quinase A , Aurora Quinase B , Aurora Quinases , Benzamidas/farmacologia , Sítios de Ligação/genética , Domínio Catalítico/genética , Linhagem Celular Tumoral , Humanos , Leucemia de Células T/genética , Mutação de Sentido Incorreto , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Quinazolinas/farmacologia
13.
J Inorg Biochem ; 115: 220-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22658243

RESUMO

Co-crystallisation of diphenyl phosphate (Hdpp) with anticancer active Pt(IV) complexes of the type cis,trans,cis-[PtCl(2)(OH)(2)(am(m)ine)(2)] has produced a new type of supramolecular adduct with short hydrogen bonds from the Hdpp molecules to the hydroxide ligands in all cases. X-ray crystallographic analysis showed within the adduct cis,trans-[PtCl(2)(en)(OH(2))(2)](dpp)(2) (1) a hydrogen bond length of 2.341(6) Å; the shortest O ··· O distance reported in the literature. Similar, though longer hydrogen bonds were observed in three other complexes: [PtCl(2)(OH)(NH(3))(2)(OH(2))]dpp·3H(2)O (2), trans-[Pt(mal)(OH)(OH(2))(S,S-chxn)]dpp·3H(2)O (3), and trans-[Pt(ox)(OH)(OH(2))(S,S-chxn)]dpp·2H(2)O (4). Co-crystallisation with Hdpp leads to higher aqueous solubility than the parent complexes indicating the potential of the adducts for use as active pharmaceutical ingredients. Anticancer testing of [Pt(mal)(OH)(OH(2))(S,S-chxn)]dpp·3H(2)O (3) showed in vitro cytotoxicity is low, as expected for Pt(IV) prodrugs, yet substantial tumour growth inhibition was observed in an in vivo ADJ/PC6 tumour model, with activity retained at maximum tolerated dose (MTD)/2 and MTD/4.


Assuntos
Antineoplásicos , Neoplasias/tratamento farmacológico , Organofosfonatos , Platina , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Feminino , Humanos , Ligação de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Organofosfonatos/química , Organofosfonatos/farmacologia , Platina/química , Platina/farmacologia
14.
J Biol Inorg Chem ; 13(6): 861-71, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18418632

RESUMO

The development of complexes that allow the monitoring of the release and distribution of fluorescent models of anticancer drugs initially bound to cobalt(III) moieties is reported. Strong quenching of fluorescence upon ligation to cobalt(III) was observed for both the carboxylate- and the hydroximate-bound fluorophores as was the partial return of fluorescence following addition of ascorbate and cysteine. The extent of the increase in the fluorescence intensity observed following addition of these potential reductants is indicative of the fluorophore being displaced from the complex by the action of ascorbate or cysteine, by ligand exchange. The cellular distribution of the fluorescence revealed that coordination to cobalt can dramatically alter the subcellular distribution of a bound fluorophore. This work shows that fluorescence can be an effective means of monitoring these agents in cells, and of determining their sites of activation. The results also reveal that the cytotoxicity of such agents correlates with their uptake and distribution patterns and that these are influenced by the types of ligands attached to the complex.


Assuntos
Corantes Fluorescentes/farmacocinética , Compostos Organometálicos/farmacocinética , Ácido Ascórbico/química , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Cisteína/química , Ensaios de Seleção de Medicamentos Antitumorais , Eletroquímica , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Ligantes , Microscopia Confocal , Conformação Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Oxirredução , Estereoisomerismo , Fatores de Tempo , Distribuição Tecidual
15.
Chemistry ; 13(10): 2974-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17171733

RESUMO

We report a potential means of selectively delivering matrix metalloproteinase (MMP) inhibitors to target tumour sites by use of a bioreductively activated Co(III) carrier system. The carrier, comprising a Co(III) complex of the tripodal ligand tris(methylpyridyl)amine (tpa), was investigated with the antimetastatic MMP inhibitor marimastat (mmstH(2)). The X-ray crystal structure of [Co(mmst)(tpa)]ClO(4) x 4H(2)O was determined and two-dimensional NMR revealed the existence of two isomeric forms of the complex in solution. Electrochemical analysis showed that the reduction potential of the complex is suitable for it to be bioreductively activated at hypoxic tumour sites. In vitro assays confirmed the stability of the prodrug in solution prior to reduction and revealed very low cytotoxicity against A2780 cells. In vivo testing in mice showed a higher level of tumour-growth inhibition by the complex than by free marimastat. Both free marimastat and and its Co(III) complex increased metastasis in the model used, with the complex significantly more active.


Assuntos
Aminas/farmacologia , Cobalto/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hipóxia/metabolismo , Inibidores de Metaloproteinases de Matriz , Compostos Organometálicos/farmacologia , Pró-Fármacos/farmacologia , Piridinas/farmacologia , Aminas/química , Animais , Antineoplásicos/farmacologia , Cobalto/química , Eletroquímica , Inibidores Enzimáticos/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Compostos Organometálicos/química , Piridinas/química , Fatores de Tempo , Células Tumorais Cultivadas/efeitos dos fármacos , Difração de Raios X
16.
Dalton Trans ; (36): 3983-90, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17828357

RESUMO

The potential for cobalt(III) complexes in medicine, as chaperones of bioactive ligands, and to target tumours through bioreductive activation, has been examined over the past 20 years. Despite this, chemical properties such as reduction potential and carrier ligands required for optimal tumour targeting and drug delivery have not been optimised. Here we review the chemistry of cobalt(III) drug design, and recent developments in the understanding of the cellular fate of these drugs.


Assuntos
Química Farmacêutica/métodos , Cobalto/farmacologia , Chaperonas Moleculares/química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipóxia , Ligantes , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
17.
Dalton Trans ; (15): 1895-901, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16585977

RESUMO

Co(III) complexes of simple hydroxamic acids have been evaluated as models of hypoxia activated prodrugs containing MMP inhibitors. The complexes are based upon a proposed carrier system comprising the tripodal tetradentate ligand tris(2-methylpyridyl)amine (tpa) with the hydroxamate functionality occupying the remaining coordination sites of the Co centre. Acetohydroxamato (aha), propionhydroxamato (pha), and benzohydroxamato (bha) complexes were synthesised and characterised by single crystal X-ray diffraction. For aha and pha both the hydroxamato and hydroximato (deprotonated) forms were obtained and were readily interconverted by pH manipulation; for bha only the hydroximato complex was obtained as a stable species. Electrochemical analysis was used to probe the redox chemistry of the complexes and assess their ease of reduction. All of the complexes displayed irreversible reduction and had low cathodic peak potentials. This suggests that the Co-tpa carrier system would provide a suitably inert framework to deliver the drugs to target sites intact yet would release the ligands upon reduction to the more labile Co(II) oxidation state.


Assuntos
Cobalto/química , Ácidos Hidroxâmicos/química , Hipóxia , Modelos Químicos , Compostos Organometálicos/química , Pró-Fármacos/química , Cristalografia por Raios X , Eletroquímica , Concentração de Íons de Hidrogênio , Hipóxia/metabolismo , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Pró-Fármacos/metabolismo
18.
Inorg Chem ; 41(5): 1223-8, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11874359

RESUMO

Complexes of salicylhydroxamic acid (shaH) with palladium(II) and platinum(II) were investigated. The synthesis of [Pt(sha)(2)] was attempted via a number of methods, and ultimately (1)H NMR investigations revealed that salicylhydroxamate would not coordinate to chloro complexes of platinum(II). However, [Pt(sha-H)(PPh(3))(2)] was successfully synthesized and the crystal structure determined (orthorhombic, space group Pca2(1) a = 17.9325(19) A, b = 11.3102(12) A, c = 18.2829(19) A, Z = 4, R = 0.0224). The sha binds via an [O,O] binding mode, in its hydroximate form. In contrast the palladium complex [Pd(sha)(2)] was readily synthesized and crystallized as [Pd(sha)(2)](DMF)(4) in the triclinic space group P(-)1,a = 7.066(1) A, b = 9.842(2) A, c = 12.385(2) A, alpha = 99.213(3)(o), beta = 90.669(3), gamma = 109.767(3)(o), Z = 1, R = 0.037. The unexpected [N,O'] binding mode of the salicylhydroxamate ligand in [Pd(sha)(2)] prompted investigation of the stability of a number of binding modes of salicylhydroxamic acid in [M(sha)(2)] (M = Pd, Pt) by density functional theory, using the B3LYP hybrid functional at the 6-311G* level of theory. Geometry optimizations were carried out for various binding modes of the ligands and their relative energies established. It was found that the [N,O'] mode gave the more stable complex, in accord with experimental observations. Stabilization of hydroxamate binding to platinum is evidently afforded by soft ligands lying trans to them.


Assuntos
Ácidos Hidroxâmicos/química , Compostos Organometálicos/química , Paládio/química , Salicilamidas/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ligantes , Espectroscopia de Ressonância Magnética , Metaloendopeptidases/antagonistas & inibidores , Conformação Molecular , Estrutura Molecular , Compostos Organometálicos/síntese química , Salicilamidas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA