Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842942

RESUMO

We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5'-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5'- and 3'-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12-C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5'-UTR of SARS-CoV-2.

2.
J Am Chem Soc ; 145(34): 18773-18777, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37582279

RESUMO

RNA molecules undergo conformational transitions in response to cellular and environmental stimuli. Site-specific protonation, a fundamental chemical property, can alter the conformational landscape of RNA to regulate their functions. However, characterizing protonation-coupled RNA conformational ensembles on a large scale remains challenging. Here, we present pH-differential mutational profiling (PD-MaP) with dimethyl sulfate probing for high-throughput detection of protonation-coupled conformational ensembles in RNA. We demonstrated this approach on microRNA-21 precursor (pre-miR-21) and recapitulated a previously discovered A+-G-coupled conformational ensemble. Additionally, we identified a secondary protonation event involving an A+-C mismatch. We validated the occurrence of both protonation-coupled ensembles in pre-miR-21 using NMR relaxation dispersion spectroscopy. Furthermore, the application of PD-MaP on a library of well-annotated human primary microRNAs uncovered widespread protonation-coupled conformational ensembles, suggesting their potentially broad functions in biology.


Assuntos
Conformação de Ácido Nucleico , Concentração de Íons de Hidrogênio , MicroRNAs/química , Espectroscopia de Ressonância Magnética
3.
Proteins ; 87(10): 878-884, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141214

RESUMO

The G protein-coupled µ-opioid receptor (µ-OR) mediates the majority of analgesia effects for morphine and other pain relievers. Despite extensive studies of its structure and activation mechanisms, the inherently low maturation efficiency of µ-OR represents a major hurdle to understanding its function. Here we computationally designed µ-OR mutants with altered stability to probe the relationship between cell-surface targeting, signal transduction, and agonist efficacy. The stabilizing mutation T315Y enhanced µ-OR trafficking to the plasma membrane and significantly promoted the morphine-mediated inhibition of downstream signaling. In contrast, the destabilizing mutation R165Y led to intracellular retention of µ-OR and reduced the response to morphine stimulation. These findings suggest that µ-OR stability is an important factor in regulating receptor signaling and provide a viable avenue to improve the efficacy of analgesics.


Assuntos
Conformação Proteica , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Transporte Proteico , Transdução de Sinais
4.
Biomolecules ; 12(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358983

RESUMO

Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an anisotropic environment that aligns in an external magnetic field. Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of RDCs from nucleic acids. Polymer-based nanodiscs prepared using negatively charged SMA-EA polymer and zwitterionic DMPC lipids were characterized by size-exclusion chromatography, 1H NMR, dynamic light-scattering, and 2H NMR. The magnetically aligned polymer-nanodiscs were used as an alignment medium to measure RDCs from a 13C/15N-labeled fluoride riboswitch aptamer using 2D ARTSY-HSQC NMR experiments. The results showed that the alignment of nanodiscs is stable for nucleic acids and nanodisc-induced RDCs fit well with the previously determined solution structure of the riboswitch. These results demonstrate that SMA-EA-based lipid-nanodiscs can be used as a stable alignment medium for high-resolution structural and dynamical studies of nucleic acids, and they can also be applicable to study various other biomolecules and small molecules in general.


Assuntos
Ácidos Nucleicos , Riboswitch , Ácidos Nucleicos/química , Polímeros/química , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética
5.
Epigenetics Chromatin ; 13(1): 18, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178718

RESUMO

BACKGROUND: MeCP2 and MBD2 are members of a family of proteins that possess a domain that selectively binds 5-methylcytosine in a CpG context. Members of the family interact with other proteins to modulate DNA packing. Stretching of DNA-protein complexes in nanofluidic channels with a cross-section of a few persistence lengths allows us to probe the degree of compaction by proteins. RESULTS: We demonstrate DNA compaction by MeCP2 while MBD2 does not affect DNA configuration. By using atomic force microscopy (AFM), we determined that the mechanism for compaction by MeCP2 is the formation of bridges between distant DNA stretches and the formation of loops. CONCLUSIONS: Despite sharing a similar specific DNA-binding domain, the impact of full-length 5-methylcytosine-binding proteins can vary drastically between strong compaction of DNA and no discernable large-scale impact of protein binding. We demonstrate that ATTO 565-labeled MBD2 is a good candidate as a staining agent for epigenetic mapping.


Assuntos
5-Metilcitosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , DNA/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Microfluídica/métodos , 5-Metilcitosina/química , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/química , Epigenômica/métodos , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Microfluídica/instrumentação , Microscopia de Força Atômica/métodos , Ligação Proteica
6.
Nat Commun ; 10(1): 948, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814513

RESUMO

An array of carbohydrates masks the HIV-1 surface protein Env, contributing to the evasion of humoral immunity. In most HIV-1 isolates 'glycan holes' occur due to natural sequence variation, potentially revealing the underlying protein surface to the immune system. Here we computationally design epitopes that mimic such surface features (carbohydrate-occluded neutralization epitopes or CONE) of Env through 'epitope transplantation', in which the target region is presented on a carrier protein scaffold with preserved structural properties. Scaffolds displaying the four CONEs are examined for structure and immunogenicity. Crystal structures of two designed proteins reflect the computational models and accurately mimic the native conformations of CONEs. The sera from rabbits immunized with several CONE immunogens display Env binding activity. Our method determines essential structural elements for targets of protective antibodies. The ability to design immunogens with high mimicry to viral proteins also makes possible the exploration of new templates for vaccine development.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Fenômenos Biofísicos , Carboidratos/química , Carboidratos/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Antígenos HIV/química , Antígenos HIV/genética , Antígenos HIV/imunologia , Humanos , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA