Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EMBO Rep ; 13(6): 561-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22565321

RESUMO

The conserved MRE11­RAD50­NBS1 (MRN) complex is an important sensor of DNA double-strand breaks (DSBs) and facilitates DNA repair by homologous recombination (HR) and end joining. Here, we identify NBS1 as a target of cyclin-dependent kinase (CDK) phosphorylation. We show that NBS1 serine 432 phosphorylation occurs in the S, G2 and M phases of the cell cycle and requires CDK activity. This modification stimulates MRN-dependent conversion of DSBs into structures that are substrates for repair by HR. Impairment of NBS1 phosphorylation not only negatively affects DSB repair by HR, but also prevents resumption of DNA replication after replication-fork stalling. Thus, CDK-mediated NBS1 phosphorylation defines a molecular switch that controls the choice of repair mode for DSBs.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clivagem do DNA , Replicação do DNA , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido , Substituição de Aminoácidos , Proteína Quinase CDC2/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/química , Humanos , Proteína Homóloga a MRE11 , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Serina/genética , Serina/metabolismo
2.
Nat Cell Biol ; 8(1): 37-45, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16327781

RESUMO

It is generally thought that the DNA-damage checkpoint kinases, ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), work independently of one another. Here, we show that ATM and the nuclease activity of meiotic recombination 11 (Mre11) are required for the processing of DNA double-strand breaks (DSBs) to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and the subsequent phosphorylation and activation of Chk1. Moreover, we show that efficient ATM-dependent ATR activation in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent manner.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Ciclo Celular , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteínas Supressoras de Tumor/química
3.
Nat Genet ; 30(3): 290-4, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11850621

RESUMO

To preserve genetic integrity, mammalian cells exposed to ionizing radiation activate the ATM kinase, which initiates a complex response-including the S-phase checkpoint pathways-to delay DNA replication. Defects in ATM or its substrates Nbs1 or Chk2 (ref. 3), the Nbs1-interacting Mre11 protein, or the Chk2-regulated Cdc25A-Cdk2 cascade all cause radio-resistant DNA synthesis (RDS). It is unknown, however, whether these proteins operate in a common signaling cascade. Here we show that experimental blockade of either the Nbs1-Mre11 function or the Chk2-triggered events leads to a partial RDS phenotype in human cells. In contrast, concomitant interference with Nbs1-Mre11 and the Chk2-Cdc25A-Cdk2 pathways entirely abolishes inhibition of DNA synthesis induced by ionizing radiation, resulting in complete RDS analogous to that caused by defective ATM. In addition, Cdk2-dependent loading of Cdc45 onto replication origins, a prerequisite for recruitment of DNA polymerase, was prevented upon irradiation of normal or Nbs1/Mre11-defective cells but not cells with defective ATM. We conclude that in response to ionizing radiation, phosphorylations of Nbs1 and Chk2 by ATM trigger two parallel branches of the DNA damage-dependent S-phase checkpoint that cooperate by inhibiting distinct steps of DNA replication.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Dano ao DNA , Fase S/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Linhagem Celular , Quinase do Ponto de Checagem 2 , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA , Humanos , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Proteínas Supressoras de Tumor , Fosfatases cdc25/metabolismo
4.
Cancer Cell ; 3(3): 247-58, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12676583

RESUMO

Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.


Assuntos
Ciclo Celular/fisiologia , Proteínas Quinases/metabolismo , Fosfatases cdc25/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA , Ativação Enzimática , Células HeLa , Humanos , Cinética , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Radiação Ionizante , Fase S/efeitos da radiação , Serina/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor , Fosfatases cdc25/efeitos da radiação
5.
Nat Cell Biol ; 5(3): 255-60, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598907

RESUMO

Cell cycle checkpoints are signal transduction pathways activated after DNA damage to protect genomic integrity. Dynamic spatiotemporal coordination is a vital, but poorly understood aspect, of these checkpoints. Here, we provide evidence for a strikingly different behaviour of Chk2 versus Nbs1, key mediators of the ataxia-telangiecatesia-mutated (ATM)-controlled checkpoint pathways induced by DNA double-strand breaks (DSBs). In live human cells with DSBs restricted to small sub-nuclear areas, Nbs1 was rapidly recruited to the damaged regions and underwent a dynamic exchange in the close vicinity of the DSB sites. In contrast, Chk2 continued to rapidly move throughout the entire nucleus, irrespective of DNA damage and including the DSB-free areas. Although phosphorylation of Chk2 by ATM occurred exclusively at the DSB sites, forced immobilization of Chk2 to spatially restricted, DSB-containing nuclear areas impaired its stimulating effect on p53-dependent transcription. These results unravel a dynamic nature of Nbs1 interaction with DSB lesions and identify Chk2 as a candidate transmitter of the checkpoint signal, allowing for a coordinated pan-nuclear response to focal DNA damage.


Assuntos
Ciclo Celular/genética , Dano ao DNA , Proteínas de Ciclo Celular/fisiologia , Humanos , Fosforilação , Células Tumorais Cultivadas
6.
Nature ; 434(7033): 605-11, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15758953

RESUMO

Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are members of the phosphoinositide-3-kinase-related protein kinase (PIKK) family, and are rapidly activated in response to DNA damage. ATM and DNA-PKcs respond mainly to DNA double-strand breaks, whereas ATR is activated by single-stranded DNA and stalled DNA replication forks. In all cases, activation involves their recruitment to the sites of damage. Here we identify related, conserved carboxy-terminal motifs in human Nbs1, ATRIP and Ku80 proteins that are required for their interaction with ATM, ATR and DNA-PKcs, respectively. These motifs are essential not only for efficient recruitment of ATM, ATR and DNA-PKcs to sites of damage, but are also critical for ATM-, ATR- and DNA-PKcs-mediated signalling events that trigger cell cycle checkpoints and DNA repair. Our findings reveal that recruitment of these PIKKs to DNA lesions occurs by common mechanisms through an evolutionarily conserved motif, and provide direct evidence that PIKK recruitment is required for PIKK-dependent DNA-damage signalling.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos Nucleares/química , Antígenos Nucleares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Sequência Conservada , Cricetinae , DNA/genética , DNA/metabolismo , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/química , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Transdução de Sinais , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
7.
Oncogene ; 23(17): 3122-7, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15048089

RESUMO

The ATM kinase is a tumour suppressor and a key activator of genome integrity checkpoints in mammalian cells exposed to ionizing radiation (IR) and other insults that elicit DNA double-strand breaks (DSBs). In response to IR, autophosphorylation on serine 1981 causes dissociation of ATM dimers and initiates cellular ATM kinase activity. Here, we show that the kinetics and magnitude of ATM Ser1981 phosphorylation after exposure of human fibroblasts to low doses (2 Gy) of IR are altered in cells deficient in Nbs1, a substrate of ATM and a component of the MRN (Mre11-Rad50-Nbs1) complex involved in processing/repair of DSBs and ATM-dependent cell cycle checkpoints. Timely phosphorylation of both ATM Ser1981 and the ATM substrate Smc1 after IR were rescued via retrovirally mediated reconstitution of Nbs1-deficient cells by wild-type Nbs1 or mutants of Nbs1 defective in the FHA domain or nonphosphorylatable by ATM, but not by Nbs1 lacking the Mre11-interaction domain. Our data indicate that apart from its role downstream of ATM in the DNA damage checkpoint network, the MRN complex serves also as a modulator/amplifier of ATM activity. Although not absolutely required for ATM activation, the MRN nuclease complex may help reach the threshold activity of ATM necessary for optimal genome maintenance and prevention of cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/efeitos da radiação , Ataxia Telangiectasia , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Proteínas de Ciclo Celular/química , Sobrevivência Celular , Dano ao DNA/genética , Proteínas de Ligação a DNA , Amplificação de Genes , Humanos , Cinética , Neoplasias/genética , Neoplasias/prevenção & controle , Proteínas Nucleares/química , Fosforilação , Fosfosserina/metabolismo , Radiação Ionizante , Proteínas Supressoras de Tumor
8.
Oncogene ; 23(52): 8535-44, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15361853

RESUMO

The DNA damage checkpoint kinase, CHK2, promotes growth arrest or apoptosis through phosphorylating targets such as Cdc25A, Cdc25C, BRCA1, and p53. Both germline and somatic loss-of-function CHEK2 mutations occur in human tumours, the former linked to the Li-Fraumeni syndrome, and the latter found in diverse types of sporadic malignancies. Here we examined the status of CHK2 by genetic and immunohistochemical analyses in 53 breast carcinomas previously characterized for TP53 status. We identified two CHEK2 mutants, 470T>C (Ile157Thr), and a novel mutation, 1368insA leading to a premature stop codon in exon 13. The truncated protein encoded by CHEK2 carrying the 1368insA was stable yet mislocalized to the cytoplasm in tumour sections and when ectopically expressed in cultured cells. Unexpectedly, we found CHEK2 to be subject to extensive alternative splicing, with some 90 splice variants detected in our tumour series. While all cancers expressed normal-length CHEK2 mRNA together with the spliced transcripts, we demonstrate and/or predict some of these splice variants to lack CHK2 function and/or localize aberrantly. We conclude that cytoplasmic sequestration may represent a novel mechanism to disable CHK2, and propose to further explore the significance of the complex splicing patterns of this tumour suppressor gene in oncogenesis.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Sequência de Bases , Neoplasias da Mama/metabolismo , Quinase do Ponto de Checagem 2 , Análise Mutacional de DNA , Feminino , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/metabolismo
9.
J Cell Biol ; 186(5): 655-63, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19736316

RESUMO

Homologous recombination (HR) is essential for faithful repair of DNA lesions yet must be kept in check, as unrestrained HR may compromise genome integrity and lead to premature aging or cancer. To limit unscheduled HR, cells possess DNA helicases capable of preventing excessive recombination. In this study, we show that the human Fbh1 (hFbh1) helicase accumulates at sites of DNA damage or replication stress in a manner dependent fully on its helicase activity and partially on its conserved F box. hFbh1 interacted with single-stranded DNA (ssDNA), the formation of which was required for hFbh1 recruitment to DNA lesions. Conversely, depletion of endogenous Fbh1 or ectopic expression of helicase-deficient hFbh1 attenuated ssDNA production after replication block. Although elevated levels of hFbh1 impaired Rad51 recruitment to ssDNA and suppressed HR, its small interfering RNA-mediated depletion increased the levels of chromatin-associated Rad51 and caused unscheduled sister chromatid exchange. Thus, by possessing both pro- and anti-recombinogenic potential, hFbh1 may cooperate with other DNA helicases in tightly controlling cellular HR activity.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Recombinases/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Dano ao DNA , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinases/genética , Recombinação Genética
10.
J Biol Chem ; 284(7): 4140-7, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19097996

RESUMO

ATR is a protein kinase that orchestrates the cellular response to replication problems and DNA damage. HCLK2 has previously been reported to stabilize ATR and Chk1. Here we provide evidence that human HCLK2 acts at an early step in the ATR signaling pathway and contributes to full-scale activation of ATR kinase activity. We show that HCLK2 forms a complex with ATR-ATRIP and the ATR activator TopBP1. We demonstrate that HCLK2-induced ATR kinase activity toward substrates requires TopBP1 and vice versa and provides evidence that HCLK2 facilitates efficient ATR-TopBP1 association. Consistent with its role in ATR activation, HCLK2 depletion severely impaired phosphorylation of multiple ATR targets including Chk1, Nbs1, and Smc1 after DNA damage. We show that HCLK2 is required for and stimulates ATR autophosphorylation and activity toward different substrates in vitro. Furthermore, HCLK2 depletion abrogated the G(2) checkpoint and decreased survival of cells after exposure to DNA damaging agents and replicative stress. Overall, our data suggest that HCLK2 facilitates ATR activation and, therefore, contributes to ATR-mediated checkpoint signaling. Importantly, our results suggest that HCLK2 functions in the same pathway as TopBP1 but that the two proteins regulate different steps in ATR activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Indução Enzimática/fisiologia , Estabilidade Enzimática/fisiologia , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA