RESUMO
Background. A bloodstream infection (BSI) presents a complex and serious health problem, a problem that is being exacerbated by increasing antimicrobial resistance (AMR).Gap Statement. The current turnaround times (TATs) for most antimicrobial susceptibility testing (AST) methods offer results retrospective of treatment decisions, and this limits the impact AST can have on antibiotic prescribing and patient care. Progress must be made towards rapid BSI diagnosis and AST to improve antimicrobial stewardship and reduce preventable deaths from BSIs. To support the successful implementation of rapid AST (rAST) in hospital settings, a rAST method that is affordable, is sustainable and offers comprehensive AMR detection is needed.Aim. To evaluate a scattered light-integrated collection (SLIC) device against standard of care (SOC) to determine whether SLIC could accelerate the current TATs with actionable, accurate rAST results for Gram-negative BSIs.Methods. Positive blood cultures from a tertiary referral hospital were studied prospectively. Flagged positive Gram-negative blood cultures were confirmed by Gram staining and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Vitek 2, disc diffusion (ceftriaxone susceptibility only) and an SLIC device. Susceptibility to a panel of five antibiotics, as defined by European Committee on Antimicrobial Susceptibility Testing breakpoints, was examined using SLIC.Results. A total of 505 bacterial-antimicrobial combinations were analysed. A categorical agreement of 95.5â% (482/505) was achieved between SLIC and SOC. The 23 discrepancies that occurred were further investigated by the broth microdilution method, with 10 AST results in agreement with SLIC and 13 in agreement with SOC. The mean time for AST was 10.53±0.46 h and 1.94±0.02 h for Vitek 2 and SLIC, respectively. SLIC saved 23.96±1.47 h from positive blood culture to AST result.Conclusion. SLIC has the capacity to provide accurate AST 1 day earlier from flagged positive blood cultures than SOC. This significant time saving could accelerate time to optimal antimicrobial therapy, improving antimicrobial stewardship and management of BSIs.
Assuntos
Gestão de Antimicrobianos , Sepse , Humanos , Hemocultura , Estudos Retrospectivos , Bactérias Gram-Negativas , Antibacterianos/farmacologiaRESUMO
The ARTIC protocol uses a multiplexed PCR approach with two primer pools tiling the entire SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genome. Primer pool updates are necessary for accurate amplicon sequencing of evolving SARS-CoV-2 variants with novel mutations. The suitability of the ARTIC V4 and updated V4.1 primer scheme was assessed using whole genome sequencing of Omicron from clinical samples using Oxford Nanopore Technology. Analysis of Omicron BA.1 genomes revealed that 93.22â% of clinical samples generated improved genome coverage at 50× read depth with V4.1 primers when compared to V4 primers. Additionally, the V4.1 primers improved coverage of BA.1 across amplicons 76 and 88, which resulted in the detection of the variant-defining mutations G22898A, A26530G and C26577G. The Omicron BA.2 sub-variant (VUI-22JAN-01) replaced BA.1 as the dominant variant by March 2022, and analysis of 168 clinical samples showed reduced coverage across amplicons 15 and 75. Upon further interrogation of primer binding sites, a mutation at C4321T [present in 163/168 (97â%) of samples] was identified as a possible cause of complete dropout of amplicon 15. Furthermore, two mutations were identified within the primer binding regions for amplicon 75: A22786C (present in 90â% of samples) and C22792T (present in 12.5â% of samples). Together, these mutations may result in reduced coverage of amplicon 75, and further primer updates would allow the identification of the two BA.2-defining mutations present in amplicon 75: A22688G and T22679C. This work highlights the need for ongoing surveillance of primer matches as circulating variants evolve and change.
Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Mutação , Sítios de LigaçãoRESUMO
Understanding the response of bacteria to environmental stress is hampered by the relative insensitivity of methods to detect growth. This means studies of antibiotic resistance and other physiological methods often take 24 h or longer. We developed and tested a scattered light and detection system (SLIC) to address this challenge, establishing the limit of detection, and time to positive detection of the growth of small inocula. We compared the light-scattering of bacteria grown in varying high and low nutrient liquid medium and the growth dynamics of two closely related organisms. Scattering data was modelled using Gompertz and Broken Stick equations. Bacteria were also exposed meropenem, gentamicin and cefoxitin at a range of concentrations and light scattering of the liquid culture was captured in real-time. We established the limit of detection for SLIC to be between 10 and 100 cfu mL-1 in a volume of 1-2 mL. Quantitative measurement of the different nutrient effects on bacteria were obtained in less than four hours and it was possible to distinguish differences in the growth dynamics of Klebsiella pneumoniae 1705 possessing the BlaKPC betalactamase vs. strain 1706 very rapidly. There was a dose dependent difference in the speed of action of each antibiotic tested at supra-MIC concentrations. The lethal effect of gentamicin and lytic effect of meropenem, and slow bactericidal effect of cefoxitin were demonstrated in real time. Significantly, strains that were sensitive to antibiotics could be identified in seconds. This research demonstrates the critical importance of improving the sensitivity of bacterial detection. This results in more rapid assessment of susceptibility and the ability to capture a wealth of data on the growth dynamics of bacteria. The rapid rate at which killing occurs at supra-MIC concentrations, an important finding that needs to be incorporated into pharmacokinetic and pharmacodynamic models. Importantly, enhanced sensitivity of bacterial detection opens the possibility of susceptibility results being reportable clinically in a few minutes, as we have demonstrated.
Assuntos
Antibacterianos , Cefoxitina , Antibacterianos/farmacocinética , Meropeném/farmacologia , Cefoxitina/farmacologia , Klebsiella pneumoniae , Gentamicinas/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Introduction. Bloodstream infections (BSI) are growing in incidence and present a serious health threat. Most patients wait up to 48 h before microbiological cultures can confirm a diagnosis. Low numbers of circulating bacteria in patients with BSI mean we need to develop new methods and optimize current methods to facilitate efficient recovery of bacteria from the bloodstream. This will allow detection of positive blood cultures in a more clinically useful timeframe. Many bacterial blood recovery methods are available and usually include a combination of techniques such as centrifugation, filtration, serum separation or lysis treatment. Here, we evaluate nine different bacteria recovery methods performed directly from blood culture.Aim. We sought to identify a bacterial recovery method that would allow for a cost-effective and efficient recovery of common BSI pathogens directly from blood culture.Methods. Simulated E. coli ATCC 25922 blood culture was used as a model system to evaluate nine different bacteria recovery methods. Each method was assessed on recovery yield, cost, hands-on time, risk of contamination and ease of use. The highest scoring recovery method was further evaluated using simulated blood cultures spiked with seven of the most frequently occurring bloodstream pathogens. The recovery yield was calculated based on c.f.u. count before and after each recovery method. Independent t-tests were performed to determine if the recovery methods evaluated were significantly different based on c.f.u. ml-1 log recovery.Results. All nine methods evaluated successfully recovered E. coli ATCC 25922 from simulated blood cultures although the bacterial yield differed significantly. The MALDI-TOF intact cell method offered the poorest recovery with a mean loss of 2.94±0.37 log c.f.u. ml-1. In contrast, a method developed by Bio-Rad achieved the greatest bacterial yield with a mean bacteria loss of 0.27±0.013 log c.f.u. ml-1. Overall, a low-speed serum-separation method was demonstrated to be the most efficient method in terms of time, cost and recovery efficiency and successfully recovered seven of the most frequent BSI pathogens with a mean bacteria loss of 0.717±0.18 log c.f.u. ml-1.Conclusion. The efficiency of bacterial recovery can vary significantly between different methods and thereby can have a critical impact on downstream analysis. The low-speed serum-separation method offered a simple and effective means of recovering common BSI pathogens from blood culture and will be further investigated for use in the rapid detection of bacteraemia and susceptibility testing in clinical practice.