Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(6): 965-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509638

RESUMO

BACKGROUND: Patient-focused outcomes present a central need for trial-readiness across all ataxias. The Activities of Daily Living part of the Friedreich Ataxia Rating Scale (FARS-ADL) captures functional impairment and longitudinal change but is only validated in Friedreich Ataxia. OBJECTIVE: Validation of FARS-ADL regarding disease severity and patient-meaningful impairment, and its sensitivity to change across genetic ataxias. METHODS: Real-world registry data of FARS-ADL in 298 ataxia patients across genotypes were analyzed, including (1) cross-correlation with FARS-stage, Scale for the Assessment and Rating of Ataxia (SARA), Patient-Reported Outcome Measure (PROM)-ataxia, and European Quality of Life 5 Dimensions visual analogue scale (EQ5D-VAS); (2) sensitivity to change within a trial-relevant 1-year median follow-up, anchored in Patient Global Impression of Change (PGI-C); and (3) general linear modeling of factors age, sex, and depression (nine-item Patient Health Questionnaire [PHQ-9]). RESULTS: FARS-ADL correlated with overall disability (rhoFARS-stage = 0.79), clinical disease severity (rhoSARA = 0.80), and patient-reported impairment (rhoPROM-ataxia = 0.69, rhoEQ5D-VAS = -0.37), indicating comprehensive construct validity. Also at item level, and validated within genotype (SCA3, RFC1), FARS-ADL correlated with the corresponding SARA effector domains; and all items correlated to EQ5D-VAS quality of life. FARS-ADL was sensitive to change at a 1-year interval, progressing only in patients with worsening PGI-C. Minimal important change was 1.1. points based on intraindividual variability in patients with stable PGI-C. Depression was captured using FARS-ADL (+0.3 points/PHQ-9 count) and EQ5D-VAS, but not FARS-stage or SARA. CONCLUSION: FARS-ADL reflects both disease severity and patient-meaningful impairment across genetic ataxias, with sensitivity to change in trial-relevant timescales in patients perceiving change. It thus presents a promising patient-focused outcome for upcoming ataxia trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atividades Cotidianas , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Qualidade de Vida , Medidas de Resultados Relatados pelo Paciente , Ataxia/fisiopatologia , Ataxia/diagnóstico , Ataxia de Friedreich/fisiopatologia , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Reprodutibilidade dos Testes , Idoso , Sistema de Registros , Adulto Jovem , Diferença Mínima Clinicamente Importante
2.
Cell Mol Neurobiol ; 42(1): 155-171, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34106361

RESUMO

Autophagosome maturation comprises fusion with lysosomes and acidification. It is a critical step in the degradation of cytosolic protein aggregates that characterize many neurodegenerative diseases. In order to better understand this process, we studied intracellular trafficking of autophagosomes and aggregates of α-synuclein, which characterize Parkinson's disease and other synucleinopathies. The autophagosomal marker LC3 and the aggregation prone A53T mutant of α-synuclein were tagged by fluorescent proteins and expressed in HEK293T cells and primary astrocytes. The subcellular distribution and movement of these vesicle populations were analyzed by (time-lapse) microscopy. Fusion with lysosomes was assayed using the lysosomal marker LAMP1; vesicles with neutral and acidic luminal pH were discriminated using the RFP-GFP "tandem-fluorescence" tag. With respect to vesicle pH, we observed that neutral autophagosomes, marked by LC3 or synuclein, were located more frequently in the cell center, and acidic autophagosomes were observed more frequently in the cell periphery. Acidic autophagosomes were transported towards the cell periphery more often, indicating that acidification occurs in the cell center before transport to the periphery. With respect to autolysosomal fusion, we found that lysosomes preferentially moved towards the cell center, whereas autolysosomes moved towards the cell periphery, suggesting a cycle where lysosomes are generated in the periphery and fuse to autophagosomes in the cell center. Unexpectedly, many acidic autophagosomes were negative for LAMP1, indicating that acidification does not require fusion to lysosomes. Moreover, we found both neutral and acidic vesicles positive for LAMP1, consistent with delayed acidification of the autolysosome lumen. Individual steps of aggregate clearance thus occur in dedicated cellular regions. During aggregate clearance, autophagosomes and autolysosomes form in the center and are transported towards the periphery during maturation. In this process, luminal pH could regulate the direction of vesicle transport. (1) Transport and location of autophagosomes depend on luminal pH: Acidic autophagosomes are preferentially transported to the cell periphery, causing more acidic autophagosomes in the cell periphery and more neutral autophagosomes at the microtubule organizing center (MTOC). (2) Autolysosomes are transported to the cell periphery and lysosomes to the MTOC, suggesting spatial segregation of lysosome reformation and autolysosome fusion. (3) Synuclein aggregates are preferentially located at the MTOC and synuclein-containing vesicles in the cell periphery, consistent with transport of aggregates to the MTOC for autophagy.


Assuntos
Autofagossomos , Doenças Neurodegenerativas , Autofagia/fisiologia , Células HEK293 , Humanos , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 48(9): 2727-2736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33532910

RESUMO

PURPOSE: The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. METHODS: [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. RESULTS: [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72-180 GBq/µmol. Autoradiography proved A2A receptor-specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 µg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. CONCLUSIONS: The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Assuntos
Tomografia por Emissão de Pósitrons , Receptor A2A de Adenosina , Adenosina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor , Camundongos , Compostos Radiofarmacêuticos , Ratos , Receptor A2A de Adenosina/metabolismo , Suínos
4.
BMC Biol ; 18(1): 143, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059680

RESUMO

BACKGROUND: ADP-ribosylation is a ubiquitous post-translational modification that involves both mono- and poly-ADP-ribosylation. ARTD10, also known as PARP10, mediates mono-ADP-ribosylation (MARylation) of substrate proteins. A previous screen identified protein kinase C delta (PKCδ) as a potential ARTD10 substrate, among several other kinases. The voltage-gated K+ channel Kv1.1 constitutes one of the dominant Kv channels in neurons of the central nervous system and the inactivation properties of Kv1.1 are modulated by PKC. In this study, we addressed the role of ARTD10-PKCδ as a regulator of Kv1.1. RESULTS: We found that ARTD10 inhibited PKCδ, which increased Kv1.1 current amplitude and the proportion of the inactivating current component in HeLa cells, indicating that ARTD10 regulates Kv1.1 in living cells. An inhibitor of ARTD10, OUL35, significantly decreased peak amplitude together with the proportion of the inactivating current component of Kv1.1-containing channels in primary hippocampal neurons, demonstrating that the ARTD10-PKCδ signaling cascade regulates native Kv1.1. Moreover, we show that the pharmacological blockade of ARTD10 increases excitability of hippocampal neurons. CONCLUSIONS: Our results, for the first time, suggest that MARylation by ARTD10 controls neuronal excitability.


Assuntos
Canal de Potássio Kv1.1/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína Quinase C-delta/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Animais , Células HEK293 , Células HeLa , Humanos , Canal de Potássio Kv1.1/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
5.
J Neurochem ; 147(5): 678-691, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30152864

RESUMO

Parkinson's disease (PD) is characterized by the loss of midbrain dopaminergic neurons and aggregates of α-synuclein termed Lewy bodies. Fingolimod (FTY720) is an agonist of sphingosine-1 phosphate receptors and an approved oral treatment for multiple sclerosis. Fingolimod elevates brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for dopaminergic neurons. BDNF and fingolimod are beneficial in several animal models of PD. In order to validate the therapeutic potential of fingolimod for the treatment of PD, we tested its effect in the subacute MPTP mouse model of PD. MPTP or vehicle was applied i.p. in doses of 30 mg/kg MPTP on five consecutive days. In order to recapitulate the combination of dopamine loss and α-synuclein aggregates found in PD, MPTP was first administered in Thy1-A30P-α-synuclein transgenic mice. Fingolimod was administered i.p. at a dose of 0.1 mg/kg every second day. Nigrostriatal degeneration was assayed by stereologically counting the number of dopaminergic neurons in the substantia nigra pars compacta, by analysing the concentration of catecholamines and the density of dopaminergic fibres in the striatum. MPTP administration produced a robust nigrostriatal degeneration, comparable to previous studies. Unexpectedly, we found no difference between mice with and without fingolimod treatment, neither at baseline, nor at 14 or 90 days after MPTP. Also, we found no effect of fingolimod in the subacute MPTP mouse model when we used wildtype mice instead of α-synuclein transgenic mice, and no effect with an increased dose of 1 mg/kg fingolimod administered every day. In order to explain these findings, we analysed BDNF regulation by fingolimod. We did find an increase of BDNF protein after a single injection of fingolimod 0.1 or 1.0 mg/kg, but not after multiple injections, indicating that the BDNF response to fingolimod is unsustainable over time. Taken together we did not observe a neuroprotective effect of fingolimod in the subacute MPTP mouse model of PD. We discuss possible explanations for this discrepancy with previous findings and conclude fingolimod might be beneficial for the nonmotor symptoms of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/6xgfn/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Antiparkinsonianos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Cloridrato de Fingolimode/uso terapêutico , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/prevenção & controle , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Imuno-Histoquímica , Intoxicação por MPTP/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Resultados Negativos , Doença de Parkinson Secundária/patologia , Substância Negra/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
J Neurochem ; 146(4): 474-492, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29747217

RESUMO

Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. We have previously shown that over-expression of the small GTPase Rab7 can induce clearance of α-synuclein aggregates. In this study, we investigate which Rab7 effectors mediate this effect. To model Parkinson's disease, we expressed the pathogenic A53T mutant of α-synuclein in HEK293T cells and Drosophila melanogaster. We tested the Rab7 effectors FYVE and coiled-coil domain-containing protein 1 (FYCO1) and Rab-interacting lysosomal protein (RILP). FYCO1-EGFP-decorated vesicles containing α-synuclein. RILP-EGFP also decorated vesicular structures, but they did not contain α-synuclein. FYCO1 over-expression reduced the number of cells with α-synuclein aggregates, defined as visible particles of EGFP-tagged α-synuclein, whereas RILP did not. FYCO1 but not RILP reduced the amount of α-synuclein protein as assayed by western blot, increased the disappearance of α-synuclein aggregates in time-lapse microscopy and decreased α-synuclein-induced toxicity assayed by the Trypan blue assay. siRNA-mediated knockdown of FYCO1 but not RILP reduced Rab7-induced aggregate clearance. Collectively, these findings indicate that FYCO1 and not RILP mediates Rab7-induced aggregate clearance. The effect of FYCO1 on aggregate clearance was blocked by dominant negative Rab7 indicating that FYCO1 requires active Rab7 to function. Electron microscopic analysis and insertion of lysosomal membranes into the plasma membrane indicate that FYCO1 could lead to secretion of α-synuclein aggregates. Extracellular α-synuclein as assayed by ELISA was, however, not increased with FYCO1. Coexpression of FYCO1 in the fly model decreased α-synuclein aggregates as shown by the filter trap assay and rescued the locomotor deficit resulting from neuronal A53T-α-synuclein expression. This latter finding confirms that a pathway involving Rab7 and FYCO1 stimulates degradation of α-synuclein and could be beneficial in patients with Parkinson's disease. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Líquido Extracelular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Locomoção/genética , Lisossomos/fisiologia , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo , Fatores de Transcrição/genética , Transfecção , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestrutura , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/ultraestrutura , proteínas de unión al GTP Rab7
7.
J Neurochem ; 145(3): 258-270, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315561

RESUMO

Delayed cell death in the penumbra region of acute ischemic stroke occurs through apoptotic mechanisms, making it amenable to therapeutic interventions. Fas/CD95 mediates apoptotic cell death in response to external stimuli. In mature neurons, Fas/CD95 signaling is modulated by Fas-apoptotic inhibitory molecule 2 (Faim2), which reduces cell death in animal models of stroke, meningitis, and Parkinson disease. Erythropoietin (EPO) has been studied as a therapeutic strategy in ischemic stroke. Erythropoietin stimulates the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway, which regulates Faim2 expression. Therefore, up-regulation of Faim2 may contribute to neuroprotection by EPO. Male Faim2-deficient mice (Faim2-/- ) and wild-type littermates (WT) were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 72 h of reperfusion. EPO was applied before (30 min) and after (24 and 48 h) MCAo. In WT mice application of EPO at a low dose (5000 U/kg) significantly reduced stroke volume, whereas treatment with high dose (90 000 U/kg) did not. In Faim2-/- animals administration of low-dose EPO did not result in a significant reduction in stroke volume. Faim2 expression as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) increased after low-dose EPO but not with high dose. An extensive phenotyping including analysis of cerebral vessel architecture did not reveal confounding differences between the genotypes. In human post-mortem brain Faim2 displayed a differential expression in areas of penumbral ischemia. Faim2 up-regulation may contribute to the neuroprotective effects of low-dose erythropoietin in transient brain ischemia. The dose-dependency may explain mixed effects of erythropoietin observed in clinical stroke trials.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Eritropoetina , Ataque Isquêmico Transitório/metabolismo , Proteínas de Membrana/metabolismo , Neuroproteção/fisiologia , Idoso , Animais , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Feminino , Humanos , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo
9.
Cell Mol Neurobiol ; 38(8): 1555, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30361893

RESUMO

The original version of this article unfortunately contained a mistake in the article title. The term secretion is missed out in the title. The correct title is: N-terminal fusion potentiates α-synuclein secretion.

10.
J Neurochem ; 139 Suppl 1: 121-130, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27091001

RESUMO

Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo
11.
J Neurochem ; 139(5): 848-857, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27638043

RESUMO

The death receptor Fas/CD95 mediates apoptotic cell death in response to external stimuli. In neurons, Fas-induced apoptosis is prevented by Fas-apoptotic inhibitory molecule 2 (Faim2). Mice lacking Faim2 showed increased neurodegeneration in animal models of stroke and bacterial meningitis. We therefore tested the relevance of Faim2 in a classical animal model of Parkinson disease and determined the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Faim2-deficient mice. Without MPTP treatment, there was no difference in the dopaminergic system between Faim2-deficient mice and control mice. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. Fourteen days after the last MPTP injection, the number of dopaminergic neurons in the lateral substantia nigra, assayed by stereological counting, was reduced by 39% in control mice and 53% in Faim2-deficient mice. The density of dopaminergic fibers in the dorsal striatum was reduced by 36% in control mice and 69% in Faim2-deficient mice, in the ventral striatum 44% in control mice and 76% in Faim2-deficient mice. Fiber density recovered at 90 days after MPTP with similar density in both groups. Striatal catecholamine levels were reduced by 81-84% in both groups and recovered at 90 days. Faim2 expression was documented in mouse midbrain using quantitative reverse transcription-PCR (qRT-PCR) and found decreased after MPTP administration. Taken together, our findings demonstrate increased degeneration of dopaminergic neurons with Faim2 deficiency, indicating that Fas-induced apoptosis contributes to cell death in the MPTP mouse model. Along with the decreased expression of Faim2 after MPTP, this finding indicates that boosting Faim2 function might represent a therapeutic strategy for Parkinson disease.


Assuntos
Modelos Animais de Doenças , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Morte Celular/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
12.
J Neurochem ; 138(5): 758-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27333324

RESUMO

Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. Aggregates are degraded by the autophago-lysosomal pathway. Since Rab7 has been shown to regulate trafficking of late endosomes and autophagosomes, we hypothesized that over-expressing Rab7 might be beneficial in Parkinson's disease. To test this hypothesis, we expressed the pathogenic A53T mutant of α-synuclein in HEK293 cells and Drosophila melanogaster. In HEK293 cells, EGFP-Rab7-decorated vesicles contain α-synuclein. Rab7 over-expression reduced the percentage of cells with α-synuclein particles and the amount of α-synuclein protein. Time-lapse microscopy confirmed that particles frequently disappeared with Rab7 over-expression. Clearance of α-synuclein is explained by the increased occurrence of acidified α-synuclein vesicles with Rab7 over-expression, presumably representing autolysosomes. Rab7 over-expression reduced apoptosis and the percentage of dead cells in trypan blue staining. In the fly model, Rab7 rescued the locomotor deficit induced by neuronal expression of A53T-α-synuclein. These beneficial effects were not produced by Rab7 missense mutations causing Charcot Marie Tooth neuropathy, or by the related GTPases Rab5, Rab9, or Rab23. Using mass spectrometry, we identified Rab7 in neuromelanin granules purified from human substantia nigra, indicating that Rab7 might be involved in the biogenesis of these possibly protective, autophagosome-like organelles in dopaminergic neurons. Taken together, Rab7 increased the clearance of α-synuclein aggregates, reduced cell death, and rescued the phenotype in a fly model of Parkinson's disease. These findings indicate that Rab7 is rate-limiting for aggregate clearance, and that Rab7 activation may offer a therapeutic strategy for Parkinson's disease. Cells over-expressing aggregation-prone A53T alpha-synuclein develop cytoplasmic aggregates mimicking changes observed in Parkinson's disease. When following cells in time-lapse microscopy, some few cells are able to remove these aggregates (Opazo et al. 2008). We now show that the percentage of cells clearing all aggregates from their cytosol is greatly increased with Rab7 over-expression, indicating that availability of Rab7 is rate-limiting for autophagic clearance of aggregates. The functional significance of this effect in neurons was confirmed in a Drosophila melanogaster model of Parkinson's disease.


Assuntos
Drosophila melanogaster/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Melaninas/metabolismo , Fagossomos/metabolismo , proteínas de unión al GTP Rab7
13.
Proc Natl Acad Sci U S A ; 109(8): 3161-6, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308488

RESUMO

The ß-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) ß-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the ß3-subunit, a cytosolic protein, they can be inhibited by activating a voltage-sensitive lipid phosphatase to deplete PIP(2). When these channels are coexpressed with a ß2a-subunit, a palmitoylated peripheral membrane protein, the inhibition is much smaller. PIP(2) sensitivity could be increased by disabling the two palmitoylation sites in the ß2a-subunit. To further test effects of membrane targeting of Ca(V) ß-subunits on PIP(2) regulation, the N terminus of Lyn was ligated onto the cytosolic ß3-subunit to confer lipidation. This chimera, like the Ca(V) ß2a-subunit, displayed plasma membrane localization, slowed the inactivation of Ca(V)2.2 channels, and increased the current density. In addition, the Lyn-ß3 subunit significantly decreased Ca(V) channel inhibition by PIP(2) depletion. Evidently lipidation and membrane anchoring of Ca(V) ß-subunits compete with the PIP(2) regulation of high-voltage-activated Ca(V) channels. Compared with expression with Ca(V) ß3-subunits alone, inhibition of Ca(V)2.2 channels by PIP(2) depletion could be significantly attenuated when ß2a was coexpressed with ß3. Our data suggest that the Ca(V) currents in neurons would be regulated by membrane PIP(2) to a degree that depends on their endogenous ß-subunit combinations.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Ativação do Canal Iônico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Subunidades Proteicas/metabolismo , Animais , Células HEK293 , Humanos , Lipoilação , Fosfoproteínas Fosfatases/metabolismo , Transporte Proteico , Peixe-Zebra
14.
NPJ Parkinsons Dis ; 10(1): 14, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195715

RESUMO

Different stages of Parkinson's disease (PD) are defined by clinical criteria, while late-stage PD is marked by the onset of morbidity milestones and rapid clinical deterioration. Based on neuropathological evidence, degeneration in the dopaminergic system occurs primarily in the early stage of PD, raising the question of what drives disease progression in late-stage PD. This study aimed to investigate whether late-stage PD is associated with increased neurodegeneration dynamics rather than functional decompensation using the blood-based biomarker serum neurofilament light chain (sNfL) as a proxy for the rate of neurodegeneration. The study included 118 patients with PD in the transition and late-stage (minimum disease duration 5 years, mean (SD) disease duration 15 (±7) years). The presence of clinical milestones (hallucinations, dementia, recurrent falls, and admission to a nursing home) and mortality were determined based on chart review. We found that sNfL was higher in patients who presented with at least one clinical milestone and increased with a higher number of milestones (Spearman's ρ = 0.66, p < 0.001). Above a cutoff value of 26.9 pg/ml, death was 13.6 times more likely during the follow-up period (95% CI: 3.53-52.3, p < 0.001), corresponding to a sensitivity of 85.0% and a specificity of 85.7% (AUC 0.91, 95% CI: 0.85-0.97). Similar values were obtained when using an age-adjusted cutoff percentile of 90% for sNfL. Our findings suggest that the rate of ongoing neurodegeneration is higher in advanced PD (as defined by the presence of morbidity milestones) than in earlier disease stages. A better understanding of the biological basis of stage-dependent neurodegeneration may facilitate the development of neuroprotective means.

15.
NPJ Parkinsons Dis ; 10(1): 95, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698004

RESUMO

The progression of Parkinson's disease (PD) is heterogeneous across patients, affecting counseling and inflating the number of patients needed to test potential neuroprotective treatments. Moreover, disease subtypes might require different therapies. This work uses a data-driven approach to investigate how observed heterogeneity in PD can be explained by the existence of distinct PD progression subtypes. To derive stable PD progression subtypes in an unbiased manner, we analyzed multimodal longitudinal data from three large PD cohorts and performed extensive cross-cohort validation. A latent time joint mixed-effects model (LTJMM) was used to align patients on a common disease timescale. Progression subtypes were identified by variational deep embedding with recurrence (VaDER). In each cohort, we identified a fast-progressing and a slow-progressing subtype, reflected by different patterns of motor and non-motor symptoms progression, survival rates, treatment response, features extracted from DaTSCAN imaging and digital gait assessments, education, and Alzheimer's disease pathology. Progression subtypes could be predicted with ROC-AUC up to 0.79 for individual patients when a one-year observation period was used for model training. Simulations demonstrated that enriching clinical trials with fast-progressing patients based on these predictions can reduce the required cohort size by 43%. Our results show that heterogeneity in PD can be explained by two distinct subtypes of PD progression that are stable across cohorts. These subtypes align with the brain-first vs. body-first concept, which potentially provides a biological explanation for subtype differences. Our predictive models will enable clinical trials with significantly lower sample sizes by enriching fast-progressing patients.

16.
EMBO Mol Med ; 16(7): 1657-1674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839930

RESUMO

Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/sangue , Doença de Parkinson/sangue , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Idoso , Masculino , Feminino , Pessoa de Meia-Idade , Multimerização Proteica , Agregados Proteicos
18.
EMBO J ; 28(20): 3256-68, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19745811

RESUMO

The relation of alpha-synuclein (alphaS) aggregation to Parkinson's disease (PD) has long been recognized, but the mechanism of toxicity, the pathogenic species and its molecular properties are yet to be identified. To obtain insight into the function different aggregated alphaS species have in neurotoxicity in vivo, we generated alphaS variants by a structure-based rational design. Biophysical analysis revealed that the alphaS mutants have a reduced fibrillization propensity, but form increased amounts of soluble oligomers. To assess their biological response in vivo, we studied the effects of the biophysically defined pre-fibrillar alphaS mutants after expression in tissue culture cells, in mammalian neurons and in PD model organisms, such as Caenorhabditis elegans and Drosophila melanogaster. The results show a striking correlation between alphaS aggregates with impaired beta-structure, neuronal toxicity and behavioural defects, and they establish a tight link between the biophysical properties of multimeric alphaS species and their in vivo function.


Assuntos
alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Drosophila/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Multimerização Proteica , Estrutura Secundária de Proteína , Ratos , alfa-Sinucleína/genética
20.
FASEB J ; 26(10): 4122-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22735174

RESUMO

Brain liver intestine Na+ channel (BLINaC) is an ion channel of the DEG/ENaC gene family of unknown function. BLINaC from rats (rBLINaC) and humans (INaC) is inactive at rest, and its mode of activation has remained unclear. Here, we show that the BLINaC protein localizes to cholangiocytes, epithelial cells that line bile ducts. Moreover, we provide evidence that rBLINaC and INaC are robustly activated by bile acids, in particular chenodeoxycholic acid and hyodeoxycholic acid (EC50=2.1±0.05 mM). Thus, BLINaC appears to be an epithelial cation channel of bile ducts sensitive to physiological concentrations of bile acids. BLINaC is related to acid-sensing ion channels (ASICs) and to the epithelial Na+ channel (ENaC) and shares ligand activation with ASICs and epithelial localization with ENaC. Therefore, based on the close homology of BLINaC to ASICs and its activation by bile acids, we propose to rename BLINaC bile acid-sensitive ion channel (BASIC).


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Bicarbonatos/metabolismo , Ductos Biliares/citologia , Western Blotting , Ácido Quenodesoxicólico/metabolismo , Cloretos/metabolismo , Ácido Desoxicólico/metabolismo , Eletrofisiologia , Células Epiteliais/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA