Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 133(6): 508-531, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37589160

RESUMO

BACKGROUND: Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS: Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS: The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS: By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.


Assuntos
Hipertensão Pulmonar , Doenças Vasculares , Humanos , Camundongos , Ratos , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Células Endoteliais , Mitocôndrias , Modelos Animais de Doenças , Endotélio , Ubiquitinas , Proteínas de Membrana , Proteínas Mitocondriais
2.
Proc Natl Acad Sci U S A ; 119(26): e2202631119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733256

RESUMO

Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Sumoilação , Animais , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Sumoilação/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Adv Healthc Mater ; 11(4): e2101855, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811967

RESUMO

Excessive reactive oxygen species (ROS) generated after myocardial infarction (MI) result in the oxidative injury in myocardium. Implantation of antioxidant biomaterials, without the use of any type of drugs, is very appealing for clinical translation, leading to the great demand of novel biomaterials with high efficiency of ROS elimination. In this study, a segmented polyurethane (PFTU) with a high density of ROS-scavenging backbone units is synthesized by the reaction of poly(thioketal) dithiol (PTK) and poly(propylene fumarate) diol (PPF) (soft segments), thioketal diamine (chain extender), and 1,6-hexamethylene diisocyanate (HDI). Its chemical structure is verified by gel permeation chromatography (GPC), 1 H nuclear magnetic resonance (1 H NMR) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The electrospun composite PFTU/gelatin (PFTU/Gt) fibrous patches show good antioxidation capacity and ROS-responsive degradation in vitro. Implantation of the PFTU/gelatin patches on the heart tissue surface in MI rats consistently decreases the ROS level, membrane peroxidation, and cell apoptosis at the earlier stage, which are not observed in the non-ROS-responsive polyurethane patch. Inflammation and fibrosis are also reduced in the PFTU/gelatin-treated hearts, resulting in the reduced left ventricular remodeling and better cardiac functions postimplantation for 28 d.


Assuntos
Infarto do Miocárdio , Poliuretanos , Animais , Fibrose , Infarto do Miocárdio/tratamento farmacológico , Estresse Oxidativo , Poliuretanos/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA