RESUMO
Using STAT3 inhibitors as a potential strategy in cancer therapy have attracted much attention. Recently, celastrol has been reported that it could directly bind to and suppress the activity of STAT3 in the cardiac dysfunction model. To explore more effective STAT3 inhibiting anti-tumour drug candidates, we synthesised a series of celastrol derivatives and biologically evaluated them with several human cancer cell lines. The western blotting analysis showed that compound 4 m, the most active derivative, could suppress the STAT3's phosphorylation as well as its downstream genes. SPR analysis, molecular docking and dynamics simulations' results indicated that the 4m could bind with STAT3 protein more tightly than celastrol. Then we found that the 4m could block cell-cycle and induce apoptosis on HCT-116 cells. Furthermore, the anti-tumour effect of 4m was verified on colorectal cancer organoid. This is the first research that discovered effective STAT3 inhibitors as potent anti-tumour agents from celastrol derivatives.
Assuntos
Antineoplásicos/farmacologia , Triterpenos Pentacíclicos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/química , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Extracting organic compounds from plants and developing derivatives are essential methods for drug discovery. Diosgenin, extracted from Dioscoreaceae plants, is a type of spirostan steroid with various biological effects, including anti-inflammation, neuro-protection, and apoptosis-induction. Many researchers committed their work to the chemical semi-synthesis of diosgenin derivatives to improve diosgenin's therapeutic bioavailability and expand its range of applications in disease treatment and prevention. Biotransformation, a mild whole-cell biocatalysis method, also made crucial contributions to the structural diversity of diosgenin analogs in recent years. Although the structural modification of diosgenin has made significant progress, it lacks a comprehensive review. Here, we review the chemical modification and biotransformation of diosgenin along with the biological evaluation of diosgenin derivatives to provide a reference for the structural modification strategy and pharmaceutical application of diosgenin derivatives.
Assuntos
Diosgenina , Anti-Inflamatórios , Biocatálise , Disponibilidade Biológica , Diosgenina/químicaRESUMO
Nanobodies are single variable domain antibodies isolated from camelids and are rapidly distinguishing themselves as ideal recognition elements in biosensors due to their comparative stability, ease of production and isolation, and high binding affinities. However, transducing analyte binding by nanobodies in real time is challenging, as most nanobodies do not directly produce an optical or electrical signal upon target recognition. Here, we report a general strategy to fabricate sensitive and selective electrochemical sensors incorporating nanobodies for detecting target analytes in heterogeneous media, such as cell lysate. Graphite felt can be covalently functionalized with recombinant HaloTag-modified nanobodies. Subsequent encapsulation with a thin layer of a hydrogel using a vapor deposition process affords encapsulated electrodes that directly display a decrease in current upon antigen binding, without added redox mediators. Differential pulse voltammetry affords clear and consistent decreases in electrode current across multiple electrode samples for specific antigen concentrations. The change in observed current vs increasing antigen concentration follows Langmuir binding characteristics, as expected. Importantly, selective and repeatable target binding in unpurified cell lysate is only demonstrated by the encapsulated electrode, with an antigen detection limit of ca. 30 pmol, whereas bare electrodes lacking encapsulation produce numerous false positive signals in control experiments.
RESUMO
To produce next-generation, shelf-stable biosensors for point-of-care diagnostics, a combination of rugged biomolecular recognition elements, efficient encapsulants, and innocuous deposition approaches is needed. Furthermore, to ensure that the sensitivity and specificity that are inherent to biological recognition elements are maintained in solid-state biosensing systems, site-specific immobilization chemistries must be invoked such that the function of the biomolecule remains unperturbed. In this work, we present a widely applicable strategy to develop robust solid-state biosensors using emergent nanobody (Nb) recognition elements coupled with a vapor-deposited polymer encapsulation layer. As compared to conventional immunoglobulin G antibodies, Nbs are smaller (12-15 kDa as opposed to ~150 kDa), have higher thermal stability and pH tolerance, boast greater ease of recombinant production, and are capable of binding antigens with high affinity and specificity. Photoinitiated chemical vapor deposition affords thin, protective polymer barrier layers over immobilized Nb arrays that allow for retention of Nb activity and specificity after both storage under ambient conditions and complete desiccation. Most importantly, we also demonstrate that vapor-deposited polymer encapsulation of Nb arrays enables specific detection of target proteins in complex heterogeneous samples, such as unpurified cell lysate, which is otherwise challenging to achieve with bare Nb arrays.
RESUMO
Climate change is leading to increased concentrations of ground-level ozone in farms and orchards. Persistent ozone exposure causes irreversible oxidative damage to plants and reduces crop yield, threatening food supply chains. Here, we show that vapor-deposited conducting polymer tattoos on plant leaves can be used to perform on-site impedance analysis, which accurately reveals ozone damage, even at low exposure levels. Oxidative damage produces a unique change in the high-frequency (>104 Hz) impedance and phase signals of leaves, which is not replicated by other abiotic stressors, such as drought. The polymer tattoos are resilient against ozone-induced chemical degradation and persist on the leaves of fruiting plants, thus allowing for frequent and long-term monitoring of cellular ozone damage in economically important crops, such as grapes and apples.