Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Fish Dis ; 47(1): e13864, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37723838

RESUMO

The Chinese revered a species of aquatic reptile known as Pelodiscus sinensis as both an edible and medicinal species. When artificially breeding, many deaths occurred at the farmed P. sinensis, mainly due to excessive breeding density, water contamination, and turtles biting each other secondary to bacterial infections. In this study, an isolate of gram-negative bacteria WH0623 was isolated from the liver and kidney of diseased P. sinensis to trace the potential pathogen of this disease. Based on biochemical characteristics and 16S rRNA gene sequencing analyses, this isolated strain of WH0623 was identified as Chryseobacterium indologenes. The strain's median lethal dose (LD50 ) was 3.3 × 105 colony-forming units (CFU)/g per fish weight tested using artificial infection. Histopathological analysis revealed pathological changes, including cell swelling, hyperaemia, and necrosis in many tissues. Antibiotic susceptibility tests revealed that the bacteria WH0623 was susceptible to doxycycline, sulphonamides, ceftazidime, norfloxacin, and ciprofloxacin. These antibiotics could treat the disease. In conclusion, the pathogen causing the death of farmed P. sinensis was isolated and identified, and a drug-sensitive test was conducted. Our findings contribute to the future diagnosis and treatment of the disease.


Assuntos
Doenças dos Peixes , Tartarugas , Animais , RNA Ribossômico 16S/genética , Doenças dos Peixes/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tartarugas/genética
2.
J Fish Dis ; 47(4): e13919, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217353

RESUMO

Aeromonas jandaei is a gram-negative bacterium commonly found in aquatic environments and can induce illnesses in amphibians, reptiles and aquatic animals. In this study, a strain of bacteria was isolated from the diseased Chinese soft-shell turtle (Pelodiscus sinensis), then named strain JDP-FX. This isolate was identified as A. jandaei after analysis of morphological, physiological and biochemical characteristics, as well as 16S rRNA and gyrB gene sequences. Virulence genetic testing further detected temperature-sensitive protease (eprCAI), type III secretion system (TTSS) (ascv), nuclease (nuc), cytotonic enterotoxin (alt) and serine proteinase (ser) in JDP-FX. Compared with healthy Chinese soft-shell turtle, the serum levels of total protein (TP), albumin (ALB) and globulin (GLB) were significantly decreased in the diseased Chinese soft-shell turtle, while, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were significantly increased. Histopathological observations showed that multiple tissues, including intestinal mucosa, liver and kidney, were severely damaged in the diseased Chinese soft-shell turtle. Moreover, the diseased Chinese soft-shell turtle had significant cell degeneration, necrosis, sloughing and interstitial inflammatory cell infiltration. The pathogenicity of JDP-FX was tested via artificial infection. The median lethal dosage (LD50 ) of the strain was 1.05 × 105 colony forming units (CFU/g) per weight of Chinese soft-shell turtle. Drug susceptibility analysis revealed that JDP-FX was susceptible to ceftazidime, minocycline, cefoperazone, ceftriaxone and piperacillin. In addition, JDP-FX was resistant to doxycycline, florfenicol, sulfonamides, gentamicin, ampicillin and neomycin. Therefore, this study may provide guidance for further research into the diagnosis, prevention and treatment of JDP-FX infection.


Assuntos
Aeromonas , Doenças dos Peixes , Tartarugas , Animais , Tartarugas/genética , Tartarugas/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , China
3.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474201

RESUMO

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Tocotrienóis , Humanos , Camundongos , Ratos , Animais , Tocotrienóis/metabolismo , Peixe-Zebra/metabolismo , Dieta Hiperlipídica , Hiperlipidemias/metabolismo , Óleo de Farelo de Arroz , Diabetes Mellitus Tipo 2/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo
4.
Fish Shellfish Immunol ; 138: 108840, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207884

RESUMO

Grass carp reovirus genotype Ⅱ (GCRV Ⅱ) causes hemorrhagic disease in a variety fish, seriously affecting the aquaculture industry in China. However, the pathogenesis of GCRV Ⅱ is unclear. Rare minnow is an ideal model organism to study the pathogenesis of GCRV Ⅱ. Herein, we applied liquid chromatography-tandem mass spectrometry metabolomics to investigate metabolic responses in the spleen and hepatopancreas of rare minnow injected with virulent GCRV Ⅱ isolate DY197 and attenuated isolate QJ205. Results indicated that marked metabolic changes were identified in both the spleen and hepatopancreas after GCRV Ⅱ infection, and the virulent DY197 strain induced more significantly different metabolites (SDMs) than the attenuated QJ205 strain. Moreover, most SDMs were downregulated in the spleen and tend to be upregulated in hepatopancreas. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that tissue-specific metabolic responses were identified after viruses infection, and the virulent DY197 strain induced more SDMs involved in amino acid metabolism in the spleen, especially the tryptophan metabolism, cysteine and methionine metabolism, which were essential for immune regulation in host; Meanwhile, nucleotide metabolism, protein synthesis and metabolism related pathways were enriched in the hepatopancreas by both virulent and attenuated strains. Our findings revealed the large scale metabolic alterations in rare minnow in response to attenuated and virulent GCRV Ⅱ infection, which will lead to a better understanding of the pathogenesis of viruses and host-pathogens interactions.


Assuntos
Carpas , Cyprinidae , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Reoviridae/fisiologia , Genótipo , Metabolômica
5.
Fish Shellfish Immunol ; 137: 108794, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146848

RESUMO

Major histocompatibility complex class Ⅰ (MHC Ⅰ) molecules play a vital role in adaptive immune systems in vertebrates by presenting antigens to effector T cells. Understanding the expression profiling of MHC Ⅰ molecules in fish is essential for improving our knowledge of the relationship between microbial infection and adaptive immunity. In this study, we conducted a comprehensive analysis of MHC Ⅰ gene characteristics in Carassius auratus, an important freshwater aquaculture fish in China that is susceptible to Cyprinid herpesvirus 2 (CyHV-2) infection. We identified approximately 20 MHC Ⅰ genes discussed, including U, Z, and L lineage genes. However, only U and Z lineage proteins were identified in the kidney of Carassius auratus using high pH reversed-phase chromatography and mass spectrometry. The L lineage proteins were either not expressed or present at an extremely low level in the kidneys of Carassius auratus. We also used targeted proteomics to analyze changes in protein MHC Ⅰ molecules abundance in healthy and CyHV-2-infected Carassius auratus. We observed that five MHC Ⅰ molecules were upregulated, and Caau-UFA was downregulated in the diseased group. This study is the first to reveal the expression of MHC Ⅰ molecules at a large scale in Cyprinids, which enhances our understanding of fish adaptive immune systems.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Carpa Dourada , Infecções por Herpesviridae/veterinária , Antígenos de Histocompatibilidade Classe I/genética
6.
Fish Shellfish Immunol ; 136: 108740, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37061070

RESUMO

Tocotrienols have strong antioxidant properties; however, tocotrienol has not been investigated in detail in aquatic products. In this study, the anti-inflammatory and antioxidant activities of the tocotrienol-rich fraction from rice bran oil and its potential mechanism were verified in a zebrafish CuSO4 inflammation model. The in vitro antioxidant activity was evaluated using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) stable radical method. The copper chelating activity was determined using the pyrocatechol violet method. Intracellular reactive oxygen species in zebrafish were detected using a fluorescent ROS probe. Transgenic Tg (lyz: DsRed2) zebrafish were used for neutrophil transmigration assays. The mRNA expression levels of antioxidant and pro-inflammatory factor genes were measured using quantitative real-time reverse transcription PCR. In the concentration range tested, 100 µg/mL TRF had the highest copper chelating activity (10%). TRF showed DPPH-free radical scavenging ability, which was 53% at 100 µg/mL TRF. TRF effectively repressed ROS generation and inhibited neutrophil migration to the inflamed site. Moreover, TRF upregulated the expression of antioxidant genes sod and gpx4b, inhibited the expression of pro-inflammatory factors tnfa and il8, and suppressed CuSO4-induced inflammation. In conclusion, TRF has significant anti-inflammatory and antioxidant properties, which supports the use of TRF as an aquatic feed additive to improve the anti-inflammatory and antioxidant capacity of aquatic products.


Assuntos
Antioxidantes , Tocotrienóis , Animais , Antioxidantes/farmacologia , Óleo de Farelo de Arroz , Peixe-Zebra , Tocotrienóis/farmacologia , Sulfato de Cobre , Espécies Reativas de Oxigênio , Cobre , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente
7.
J Fish Dis ; 46(11): 1249-1256, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535813

RESUMO

Chinese giant salamander iridovirus (GSIV) is the first known and causative viral pathogen in Andrias davidianus. Developing a sensitive, accurate and specific assay to detect GSIV in samples is essential to prevent the further spread of the pathogen. In this study, we established a droplet digital PCR (ddPCR) assay that targeted the mcp gene of GSIV, enabling rapid and quantitative detection of the virus. We determined that the optimal annealing temperature, primer concentration and probe concentration were 57.1°C, 50 nM and 500 nM, respectively. We analysed the specificity and sensitivity of the ddPCR assay and found that five common aquatic animal viruses, including Cyprinid herpesvirus 2 (CyHV-2), infectious spleen and kidney necrosis virus (ISKNV), Koi herpesvirus (KHV) and Carp Edema Virus (CEV) displayed negative results based on this GSIV ddPCR assay. The assay can detect GSIV with the lowest detection limit of 3.7 copies per reaction. To evaluate the sensitivity and accuracy of the ddPCR assay, we tested different infected tissue samples with both the ddPCR and TaqMan real-time PCR assays. Our results showed that the ddPCR assay detected GSIV in all samples with 100% positivity, while the TaqMan real-time PCR assay detected GSIV in only 82.1% of samples. The established ddPCR method provided several advantages in detecting GISV, including high sensitivity, high precision and absolute quantification, making it a powerful tool for detection of possible and potential GSIV infection, even in samples with low viral load.

8.
J Fish Dis ; 46(3): 239-245, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36591869

RESUMO

Tilapia parvovirus (TiPV) causes severe mortality rates in cultured tilapia, resulting in substantial losses to the fish industry. Droplet digital PCR (ddPCR) is a sensitive, accurate, and absolute quantitation method, plus it does not require a standard curve. Herein we report the development and application of a sensitive ddPCR-based method to rapidly detect and quantify TiPV. Optimal annealing temperature was determined to be 59.3°C, and optimal primer and probe concentrations were 900 nmol/L and 250 nmol/L, respectively. Our ddPCR method was highly specific to TiPV and showed no cross-reactivity with other viruses. Further, the detection limit of ddPCR was 0.07 copies/µl, being lower than that of real-time PCR (qPCR, 4.63 copies/µl). We also investigated the ability of ddPCR to detect TiPV in 50 samples and compared the outcome with qPCR data in terms of sensitivity and accuracy. The results showed that the positive detection rate of ddPCR (32%) was higher than that of qPCR (18%). To conclude, our ddPCR method was effective at detecting TiPV in samples with low viral loads. We believe that its application can facilitate the surveillance of sources and transmission routes of TiPV.


Assuntos
Doenças dos Peixes , Parvovirus , Tilápia , Animais , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/métodos
9.
J Fish Dis ; 46(2): 91-98, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36209477

RESUMO

Largemouth bass ranavirus (LMBRaV), also known as largemouth bass virus (LMBV), is a high mortality pathogen in largemouth bass. A rapid, sensitive, specific and convenient diagnosis method is an urgent requirement for the prevention of virus transmission. In the present study, a droplet digital PCR (ddPCR) method based on the major capsid protein (mcp) gene was established to detect and quantify the virus genome copy number. Oligonucleotide primers were designed based on the LMBRaV mcp gene sequence. The specificity and sensitivity of ddPCR assay were analysed. The other aquatic virus including Chinese giant salamander iridovirus (GSIV), Cyprinid herpesvirus II (CyHV-2) and infectious spleen and kidney necrosis virus could not be detected by LMBRaV ddPCR assay. The detection limit of ddPCR assay was 2 ± 0.37 copies/µl DNA sample. And this ddPCR assay had great repeatability and reproducibility. In clinical diagnosis of 50 largemouth bass, 43 positive samples were detected by ddPCR, whereas only 34 positive samples were detected by quantitative PCR (qPCR). This LMBRaV detection assay provided a specific and sensitive method for the rapid diagnosis of LMBRaV infection in largemouth bass as well as quantification of the virus load.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Ranavirus/genética , Reprodutibilidade dos Testes , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Proteínas do Capsídeo/genética
10.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239865

RESUMO

Long-term or excessive oxidative stress can cause serious damage to fish. Squalene can be added to feed as an antioxidant to improve the body constitution of fish. In this study, the antioxidant activity was detected by 2,2-diphenyl-1-acrylhydrazyl (DPPH) test and fluorescent probe (dichloro-dihydro-fluorescein diacetate). Transgenic Tg (lyz: DsRed2) zebrafish were used to evaluate the effect of squalene on CuSO4-induced inflammatory response. Quantitative real-time reverse transcription polymerase chain reaction was used to examine the expression of immune-related genes. The DPPH assay demonstrated that the highest free radical scavenging exerted by squalene was 32%. The fluorescence intensity of reactive oxygen species (ROS) decreased significantly after 0.7% or 1% squalene treatment, and squalene could exert an antioxidative effect in vivo. The number of migratory neutrophils in vivo was significantly reduced after treatment with different doses of squalene. Moreover, compared with CuSO4 treatment alone, treatment with 1% squalene upregulated the expression of sod by 2.5-foldand gpx4b by 1.3-fold to protect zebrafish larvae against CuSO4-induced oxidative damage. Moreover, treatment with 1% squalene significantly downregulated the expression of tnfa and cox2. This study showed that squalene has potential as an aquafeed additive to provide both anti-inflammatory and antioxidative properties.


Assuntos
Antioxidantes , Peixe-Zebra , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peixe-Zebra/genética , Sulfato de Cobre/farmacologia , Esqualeno/farmacologia , Estresse Oxidativo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
11.
J Proteome Res ; 21(8): 1961-1973, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35792615

RESUMO

Cyprinid herpesvirus 2 (CyHV-2) is a typical linear double-stranded DNA virus, which can induce severe herpesviral hematopoietic necrosis disease (HVHND) in gibel carp. However, the CyHV-2 infection mechanisms still remain unresolved till now. Here, we combined the isobaric tag for relative absolute quantitation (iTRAQ)-labeled quantitative proteomic and phosphoproteomic analysis enriched by Ti4+-immobilized titanium ion affinity chromatography (IMAC) to uncover the host responses to CyHV-2 infection in the kidneys of symptomatic and diseased gibel carp. We totally identified 192 differential expression proteins and 951 high-confident phosphopeptides involved in 657 proteins. After being infected with CyHV-2, the proteins involved in energy generation and ion balance were significantly downregulated in the host, and the phosphorylated proteins induced by viral infection mainly participated in the regulation for RNA processing, translation, cytoskeleton organization, immunoreaction, etc. Furthermore, 11 phosphorylated CyHV-2 viral proteins were found in the diseased group by the host proteome. The virus-host protein-protein interactions were investigated, in which the potential host kinases casein kinase II (CK-II) and cyclin-dependent kinase (CDK) that interacted with viral ORF88 or ORF89 were identified and can serve as candidate targets for disease treatment in the future. Overall, our study provides a comprehensive understanding of CyHV-2-induced perturbations at the protein and phosphorylation levels in gibel carp, forming a base for the treatment of HVHND.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Herpesviridae/genética , Proteômica
12.
PLoS Pathog ; 16(9): e1008765, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970777

RESUMO

Tilapia is one of the most important economic and fastest-growing species in aquaculture worldwide. In 2015, an epidemic associated with severe mortality occurred in adult tilapia in Hubei, China. The causative pathogen was identified as Tilapia parvovirus (TiPV) by virus isolation, electron microscopy, experimental challenge, In situ hybridization (ISH), indirect immunofluorescence (IFA), and viral gene sequencing. Electron microscopy revealed large numbers of parvovirus particles in the organs of diseased fish, including kidney, spleen, liver, heart, brain, gill, intestine, etc. The virions were spherical in shape, non-enveloped and approximately 30nm in diameter. The TiPV was isolated and propagated in tilapia brain cells (TiB) and induced a typical cytopathic effect (CPE) after 3 days post-infection (dpi). This virus was used to experimentally infect adult tilapia and clinical disease symptoms similar to those observed naturally were replicated. Additionally, the results of ISH and IFA showed positive signals in kidney and spleen tissues from TiPV-infected fish. To identify TiPV-specific sequences, the near complete genome of TiPV was obtained and determined to be 4269 bp in size. Phylogenetic analysis of the NS1 sequence revealed that TiPV is a novel parvovirus, forms a separate branch in proposed genus Chapparvovirus of Parvoviridae. Results presented here confirm that TiPV is a novel parvovirus pathogen that can cause massive mortality in adult tilapia. This provides a basis for the further studies to define the epidemiology, pathology, diagnosis, prevention and treatment of this emerging viral disease.


Assuntos
Doenças dos Peixes/virologia , Infecções por Parvoviridae/virologia , Parvovirus/patogenicidade , Tilápia/virologia , Animais , China , Efeito Citopatogênico Viral/efeitos dos fármacos , Baço/virologia
13.
Fish Shellfish Immunol ; 125: 190-199, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35569777

RESUMO

In aquatic animals, hydrogen peroxide (H2O2), which is a source of oxidative stress, can cause physiological dysfunction, inflammation, and death. Sanguinarine (SAN) is a plant extract known to improve antioxidant and immune capacity. However, the roles of SAN in H2O2-induced liver tissue toxicity is unclear. The effects on hepatic oxidative damage, inflammatory response, and apoptosis were investigated by feeding rice field eel with 0, 375, and 750 µg/kg of SAN for eight weeks and then intraperitoneally injected with H2O2. The results showed that after 24 h of H2O2 injection, the activities of ALT and AST in serum were significantly increased, oxidative damage and inflammatory response occurred in the liver, and apoptosis was induced, which indicated that H2O2 induced liver damage in rice field eel. However, dietary supplemented with 375 or 750 µg/kg SAN significantly decreased the activities of ALT and AST in serum, and significantly increased the antioxidant function (decreased ROS, MDA, and antioxidant enzymes levels, downregulated antioxidant-related gene expression, and inhibited the transcription level of nrf2). The addition of SAN at 375 or 750 µg/kg ameliorated H2O2-induced inflammatory response of liver (upregulated tgf-ß1 mRNA expression, downregulated il-1ß, il-6, il-8, and il-12ß mRNA expression, and inhibited the transcription levels of tlr-3 tlr-7, and nf-κb). In addition, dietary supplemented with 375 or 750 µg/kg SAN alleviated the apoptosis of liver induced by H2O2 (downregulated bax mRNA expression, upregulated caspase3 mRNA expression, and reduced the number of apoptotic cells by TUNEL staining). Overall, these results suggested that SAN could alleviate the liver injury in rice field eel induced by H2O2, mainly by improving antioxidant capacity, alleviating inflammatory response and inhibiting apoptosis, and the effect of 750 µg/kg SAN addition is better than 375 µg/kg.


Assuntos
Peróxido de Hidrogênio , Smegmamorpha , Animais , Antioxidantes/metabolismo , Apoptose , Benzofenantridinas , Peróxido de Hidrogênio/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Isoquinolinas , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Smegmamorpha/genética
14.
Fish Shellfish Immunol ; 123: 142-151, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35219830

RESUMO

Grass carp reovirus genotype Ⅱ (GCRV II) causes severe hemorrhagic disease in grass carp and affects the aquaculture industry in China. GCRV Ⅱ isolates have been collected from different epidemic areas in China, and these isolates can lead to different degrees of hemorrhagic symptoms in grass carp. Rare minnow (Gobiocypris rarus) is widely used as a model fish to study the mechanism of hemorrhagic disease because of its high sensitivity to GCRV. In this study, the protein levels in the spleen of rare minnow after infection with GCRV virulent isolate JZ809 and attenuated isolate XT422 were investigated using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics. 109 and 50 differentially expressed proteins (DEPs) in the virulent and attenuated infection groups were obtained, respectively, among which 40 DEPs were identified in both groups. Combining protein expression profiling with gene ontology (GO) annotation, the responses of rare minnow to the two genotypes GCRV Ⅱ in terms of upregulated proteins were similar, focusing on ATP synthesis, in which ATP can serve as a "danger" signal to activate an immunoreaction in eukaryotes. Meanwhile, the virulent genotype JZ809 induced more immunoproteins and increased the levels of ubiquitin-proteasome system members to adapt to virus infection. However, together with a persistent and excessive inflammatory response and declining carbon metabolism, rare minnow presented more severe hemorrhagic disease and mortality after infection with virulent JZ809 than with attenuated XT422. The results provide a valuable information that will increase our understanding of the pathogenesis of viruses with different levels of virulence and the mechanism of interaction between the virus and host. Furthermore, the 6 proteins that were only significantly upregulated in the XT422 infection group all belonged to cluster 2, and 28 of 30 proteins that were only upregulated in JZ809 infection group were clustered into cluster 1. For the downregulated proteins, all DEPs in the XT422 infection group were clustered into cluster 4, and 25 of 39 proteins that were only significantly downregulated in the JZ809 infection group belonged to cluster 3. The results indicated that the DEPs in the attenuated XT422 infection group might be sensitive and their abundance changed more quickly when fish experienced virus infection.


Assuntos
Carpas , Cyprinidae , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Trifosfato de Adenosina , Animais , Anticorpos Antivirais , Genótipo , Proteômica , Infecções por Reoviridae/veterinária
15.
Fish Shellfish Immunol ; 128: 536-546, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35988713

RESUMO

Fish are extremely vulnerable to environmental stimulation and produce oxidative stress. Among them, hydrogen peroxide is an oxidative stress source that cannot be ignored in fish, which can cause physical disorders, inflammation and even death. Taurine was revealed to reduce oxidative damage and inflammation caused by toxic substances, but whether it can reduce toxicity of rice field eel caused by H2O2 has not been determined. Thus, the intervention effects of taurine on H2O2-induced oxidative stress, inflammation, apoptosis, and autophagy in rice field eel. The results showed that oxidative injury in the liver was determined after H2O2 injection, as indicated by enhanced serum AST and ALT activities, inhibited the antioxidant function (increased MDA and ROS contents, decreased antioxidant enzymes, inhibited nrf2 transcription level), and induced inflammatory response (upregulated il-1ß, il-6, il-8, and il-12ß gene expression, downregulated tgf-ß1 gene expression, activated the transcription level of nf-κb, tlr-3, and tlr-7). In addition, bax, caspase3, beclin1, and Lc3B gene expression were significantly upregulated after H2O2 injection, while bcl2 and p62 gene expression were downregulated, leading to the occurrence of apoptosis and autophagy. In contrast, adding 0.2 and 0.5% taurine to feed significantly alleviated this damage, as indicated by the recovery of the aforementioned bioindicators, and the effect of 0.5% taurine addition is better than 0.2%. Overall, these results suggested that taurine can relieve the liver toxicity induced by H2O2, which enriched the toxic mechanism of H2O2 on fish and provided evidence for the protective effect of taurine on liver.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Antioxidantes/metabolismo , Apoptose , Proteína Beclina-1 , Biomarcadores Ambientais , Peróxido de Hidrogênio/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/veterinária , Interleucina-6/metabolismo , Interleucina-8 , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Fish Shellfish Immunol ; 127: 681-689, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738488

RESUMO

A novel GCRV strain isolated from healthy grass carp was named as grass carp reovirus - HH196 (GCRV-HH196), and its infection mechanism remains unclear. In this study, the grass carp ovary cell line (GCO cells) was used to investigate the cell death involved in GCRV-HH196 infection. The results showed that DNA damage, cells volume reduction and cytoplasm shrinkage happened during GCRV-HH196 infection. The mRNA expression levels of pro-apoptotic genes were up-regulated during infection. Two initiators of apoptosis, caspase 8 and caspase 9, and the executioner of apoptosis, caspase 3, were all significantly activated in GCRV-HH196-infected cells. Flow cytometry analysis showed that the number of apoptotic cells in infected cells was significantly higher than that in control cells as the infection progress. Meanwhile, autophagy was also involved in the regulation of GCRV - HH196 infection. We observed that LC3 puncta existed in cytoplasm in GCRV-HH196-infected cells. Furthermore, the protein level of LC3-Ⅱ and Beclin-1 increased, while that of p-Akt decreased in GCRV-HH196-infected cells. These results demonstrated that GCRV-HH196 may regulate apoptosis and autophagy for the virus proliferation and spread, which set a foundation for further research on the interaction between GCRV-HH196 and host.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Apoptose , Autofagia , Carpas/genética , Linhagem Celular , Doenças dos Peixes/genética , Reoviridae/fisiologia , Infecções por Reoviridae/genética
17.
Fish Shellfish Immunol ; 120: 92-101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800657

RESUMO

Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) has become a popular technique to assess gene expression. Suitable reference genes are normally identified first to ensure accurate normalization. The aim of the present study was to select the most stable genes in embryonic developmental stages, the early development of immune organs, and cells infected with Chinese rice-field eel rhabdovirus (CrERV) of the rice-field eel (Monopterus albus). Four reference genes, including those encoding 18S ribosomal RNA (18SrRNA), beta actin (ß-actin), elongation factor 1 alpha (EF1ɑ), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were assessed using geNorm, NormFinder, BestKeeper, and RefFinder software. Analyses indicated the stability ranking was 18SrRNA > ß-actin > GAPDH > EF1α in the embryonic stage, with 18SrRNA as the most stable reference gene. For immunity-related organs at different developmental stages, the order in the thymus was ß-actin > GAPDH > EF1α > 18SrRNA, with ß-actin as the most stable gene. In both spleen and kidney tissues, the rank order was EF1ɑ > GAPDH > ß-actin > 18SrRNA, with EF1α as the most stable gene. Furthermore, in rice-field eel kidney (CrE-K) cells infected with CrERV, the ranking was EF1ɑ > ß-actin > GAPDH > 18SrRNA, with EF1α as the most stable gene. The results for cells infected with CrERV were verified by testing signaling pathway genes catenin beta 1 (CTNNB1) and NOTCH1 based on the above four genes after virus infection in CrE-K cells. This study laid the foundation for choosing suitable reference genes for immunity-related gene expression analysis in rice-field eel.


Assuntos
Infecções por Rhabdoviridae/veterinária , Smegmamorpha , Actinas/genética , Animais , Perfilação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Rhabdoviridae , Smegmamorpha/genética , Smegmamorpha/imunologia , Smegmamorpha/virologia
18.
J Fish Dis ; 45(2): 361-371, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34843633

RESUMO

Chinese rice-field eels rhabdovirus (CrERV), belonging to the genus Perhabdovirus in the family Rhabdoviridae, is the causative agent of the haemorrhagic disease of Chinese rice-field eels, Monopterus albus. The present study aims to establish a cell line derived from the kidney of Chinese rice-field eel (CrEK) for the further study of the pathogenic virus. CrEK cells were epithelioid-like and grew well in M199 medium supplemented with 10% foetal bovine serum at 28°C, and the cell line has been subcultured for more than 80 times. Karyotyping analysis of CrEK cells at 25th passage indicated a modal chromosome number of 24. Significant cytopathic effect (CPE) was observed in CrEK cells after infection with CrERV, and the virus titre reached 107.8 ± 0.45 TCID50 /mL. The transmission electron microscopy revealed that there were a large number of virus particles in the cytoplasm of cells. The virus infection in cells was also assayed by using indirect immunofluorescence assay (IFA), fluorescence in situ hybridization (FISH), reverse transcription PCR (RT-PCR) and quantitative real-time reverse transcription-PCR (qRT-PCR). In experimental infection, CrERV cultured by cells could cause over 90% mortality in fish. CrEK represents the first kidney cell line originated from Chinese rice-field eels and be a potential material for investigating the mechanism of virus infection in this fish and the control methods for the disease.


Assuntos
Doenças dos Peixes , Rhabdoviridae , Animais , Linhagem Celular , China , Enguias , Hibridização in Situ Fluorescente , Rim , Rhabdoviridae/genética
19.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886885

RESUMO

In immature lymphocytes, recombination activating genes 1 and 2 are necessary for antigen receptor V (D) J recombination, representing immature lymphocyte biomarkers. Herein, we cloned and sequenced rice-field eel rag1 and rag2 genes. Their expressions in the thymus, liver, and kidney were significant from 0 days post hatching (dph) to 45 dph, peaking at 45 dph in these three tissues. In situ hybridization detected high rag1 and rag2 expressions in the liver, kidney, and thymus of rice-field eel from 2 to 45 dph, suggesting that multiple tissues of rice-field eel contain lymphocyte lineage cells and undergo lymphopoiesis. Tissue morphology was used to observe lymphopoiesis development in these three tissues. The thymus primordium began to develop at 2 dph, while the kidney and liver have generated. Our findings verified that the thymus is the primary lymphopoietic tissue and suggested that, in rice-field eel, lymphocyte differentiation also occurs in the liver and kidney.


Assuntos
Linfopoese , Recombinação V(D)J , Animais , Enguias/genética , Expressão Gênica , Larva , Linfopoese/genética
20.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012277

RESUMO

Glycosylphosphatidylinositol mannosyltransferase I (GPI-MT-I) is an essential glycosyltransferase of glycosylphosphatidylinositol-anchor proteins (GPI-APs) that transfers the first of the four mannoses in GPI-AP precursors, which have multiple functions, including immune response and signal transduction. In this study, the GPI-MT-I gene that regulates GPI-AP biosynthesis in Andrias davidianus (AdGPI-MT-I) was characterized for the first time. The open reading frame (ORF) of AdGPI-MT-I is 1293 bp and encodes a protein of 430 amino acids that contains a conserved PMT2 superfamily domain. AdGPI-MT-I mRNA was widely expressed in the tissues of the Chinese giant salamander. The mRNA expression level of AdGPI-MT-I in the spleen, kidney, and muscle cell line (GSM cells) was significantly upregulated post Chinese giant salamander iridovirus (GSIV) infection. The mRNA expression of the virus major capsid protein (MCP) in AdGPI-MT-I-overexpressed cells was significantly reduced. Moreover, a lower level of virus MCP synthesis and gene copying in AdGPI-MT-I-overexpressed cells was confirmed by western blot and ddPCR. These results collectively suggest that GSIV replication in GSM cells was significantly reduced by the overexpression of the AdGPI-MT-I protein, which may contribute to a better understanding of the antiviral mechanism against iridovirus infection.


Assuntos
Iridovirus , Animais , China , Iridovirus/genética , Iridovirus/metabolismo , Manosiltransferases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Urodelos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA