Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 211(11): 1701-1713, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843504

RESUMO

Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model. Fbxw7 deficiency results in decreased production of IL-23 in DCs. FBXW7 interacts with the lysine N-methyltransferase suppressor of variegation 39 homolog 2 (SUV39H2), which catalyzes the trimethylation of histone H3 Lys9 (H3K9) during transcription regulation. FBXW7 mediates the ubiquitination and degradation of SUV39H2, thus decreasing H3K9m3 deposition on the Il23a promoter. The Suv39h2 knockout mice displayed exacerbated skin inflammation with the IL-23/IL-17 axis overactivating in the psoriasis model. Taken together, our results indicate that FBXW7 increases IL-23 expression in DCs by degrading SUV39H2, thereby aggravating psoriasis-like inflammation. Inhibition of FBXW7 or the FBXW7/SUV39H2/IL-23 axis may represent a novel therapeutic approach to psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Células Dendríticas/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Epigênese Genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Psoríase/patologia , Pele/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Gene ; 927: 148727, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942180

RESUMO

This study aimed to investigate placental microblood flow perfusion in fetal growth restriction (FGR) both pre- and post-delivery, and explore the influence of LINC00473 and its downstream targets on FGR progression in trophoblast cells. Placental vascular distribution, placental vascular index (VIMV), CD34 expression, and histological changes were compared between control and FGR groups. FGR-related differentially expressed genes (DEGs) were analyzed and validated by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) in placentae. In vitro experiments examined the regulatory relationships among LINC00473, miR-5189-5p, and StAR, followed by investigations into their impacts on cell proliferation and apoptosis. FGR placentae exhibited irregular shapes, uneven parenchymal echo, stromal dysplasia, ischemic infarction, and variable degrees of thickening in some cases. FGR samples showed less prominent mother vessel lakes, significantly lower VIMV, and decreased CD34 expression. Hematoxylin & eosin (H&E) staining revealed placental fibrosis, fibrin adhesion, infarction, and interstitial dysplasia in FGR. LINC00473, miR-5189-5p, and StAR were identified as DEG, with qPCR demonstrating a significant increase in LINC00473 and a decrease in miR-5189-5p in FGR, while both qPCR and IHC indicated a significant increase in StAR expression. LINC00473 served as an endogenous sponge against miR-5189-5p in human HTR-8/SV neo cells, and StAR expression was regulated by both LINC00473 and miR-5189-5p. Dysregulation of these genes affected cell proliferation and apoptosis. Pathological changes in the placenta are significant contributors to FGR, with placental microblood flow potentially serving as an indicator for monitoring its progression. LINC00473 and its downstream targets may modulate trophoblasts proliferation and apoptosis, thus influencing the onset of FGR, suggesting novel avenues for diagnosis and treatment.

3.
J Cancer ; 14(16): 2964-2977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859814

RESUMO

Pancreatic cancer is a formidable cause of cancer-related deaths worldwide and has witnessed a more than twofold increase in incidence over the last 25 years. The most frequently occurring form of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), accounting for the majority of pancreatic cancer cases. N6-methyladenosine (m6A), the most abundant transcript modification, has been implicated in the pathogenesis of numerous human cancers, including pancreatic cancer. Despite this, the functional role of methyltransferase-like 16 (METTL16), a critical m6A methyltransferase, in PDAC remains elusive. In this study, we demonstrate that METTL16 expression is significantly diminished in PDAC, rendering it a promising prognostic indicator. Strikingly, both in vitro and in vivo assays revealed accelerated metastasis and invasion of PDAC cells upon METTL16 knockdown, while overexpression of METTL16 exerted an opposite effect. Mechanistically, METTL16 regulates DVL2 expression by suppressing its translation via m6A modification, thereby regulating Wnt/ß-catenin signaling., Our results unveil the downregulation of METTL16 as a concomitant increase in DVL2 levels via m6A modification promoting the progression of PDAC. Thus, we propose METTL16 as a novel therapeutic candidate for targeted PDAC treatment.

4.
Front Oncol ; 13: 1145676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064154

RESUMO

Background: It is well-established that patients with glioma have a poor prognosis. Although the past few decades have witnessed unprecedented medical advances, the 5-year survival remains dismally low. Objective: This study aims to investigate the role of transmembrane protein-related genes in the development and prognosis of glioma and provide new insights into the pathogenesis of the disease. Methods: The datasets of glioma patients, including RNA sequencing data and relative clinical information, were obtained from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) databases. Prognostic transmembrane protein-related genes were identified by univariate Cox analysis. New disease subtypes were recognized based on the consensus clustering method, and their biological uniqueness was verified via various algorithms. The prognosis signature was constructed using the LASSO-Cox regression model, and its predictive power was validated in external datasets by receiver operating characteristic (ROC) curve analysis. An independent prognostic analysis was conducted to evaluate whether the signature could be considered a prognostic factor independent of other variables. A nomogram was constructed in conjunction with traditional clinical variables. The concordance index (C-index) and Decision Curve Analysis (DCA) were used to assess the net clinical benefit of the signature over traditional clinical variables. Seven different softwares were used to compare the differences in immune infiltration between the high- and low-risk groups to explore potential mechanisms of glioma development and prognosis. Hub genes were found using the random forest method, and their expression was based on multiple single-cell datasets. Results: Four molecular subtypes were identified, among which the C1 group had the worst prognosis. Principal Component Analysis (PCA) results and heatmaps indicated that prognosis-related transmembrane protein genes exhibited differential expression in all four groups. Besides, the microenvironment of the four groups exhibited significant heterogeneity. The 6 gene-based signatures could predict the 1-, 2-, and 3-year overall survival (OS) of glioma patients. The signature could be used as an independent prognosis factor of glioma OS and was superior to traditional clinical variables. More immune cells were infiltrated in the high-risk group, suggesting immune escape. According to our signature, many genes were associated with the content of immune cells, which revealed that transmembrane protein-related genes might influence the development and prognosis of glioma by regulating the immune microenvironment. TMEM158 was identified as the most important gene using the random forest method. The single-cell datasets consistently showed that TMEM158 was expressed in multiple malignant cells. Conclusion: The expression of transmembrane protein-related genes is closely related to the immune status and prognosis of glioma patients by regulating tumor progression in various ways. The interaction between transmembrane protein-related genes and immunity during glioma development lays the groundwork for future studies on the molecular mechanism and targeted therapy of glioma.

5.
Cell Mol Immunol ; 15(12): 1057-1070, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30275535

RESUMO

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, and the pathogenesis of SLE has not been fully elucidated. The E3 ubiquitin ligase FBXW7 has been well characterized in cancer as a tumor suppressor that can promote the ubiquitination and subsequent degradation of various oncoproteins; however, the potential role of FBXW7 in autoimmune diseases is unclear. In the present study, we identified that FBXW7 is a crucial exacerbating factor for SLE development and progression in a mouse model induced by 2, 6, 10, 14-tetramethylpentadecane (TMPD). Myeloid cell-specific FBXW7-deficient (Lysm+FBXW7f/f) C57BL/6 mice showed decreased immune complex accumulation, glomerulonephritis, glomerular mesangial cell proliferation, and base-membrane thickness in the kidney. Lysm+FBXW7f/f mice produced fewer anti-Sm/RNP and anti-ANA autoantibodies and showed a decreased MHC II expression in B cells. In Lysm+FBXW7f/f mice, we observed that cell apoptosis was reduced and that fewer CD11b+Ly6Chi inflammatory monocytes were recruited to the peritoneal cavity. Consistently, diffuse pulmonary hemorrhage (DPH) was also decreased in Lysm+FBXW7f/f mice. Mechanistically, we clarified that FBXW7 promoted TMPD-induced cell apoptosis by catalyzing MCL1 degradation through K48-linked ubiquitination. Our work revealed that FBXW7 expression in myeloid cells played a crucial role in TMPD-induced SLE progression in mice, which may provide novel ideas and theoretical support for understanding the pathogenesis of SLE.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Apoptose , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Proteína 7 com Repetições F-Box-WD/genética , Humanos , Rim/metabolismo , Lúpus Eritematoso Sistêmico/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Picolinas , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA