Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 20(1): 215, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907561

RESUMO

BACKGROUND: Accurately determining the softness level of pituitary tumors preoperatively by using their image textures can provide a basis for surgical options and prognosis. Existing methods for this problem require manual intervention, which could hinder the efficiency and accuracy considerably. METHODS: We present an automatic method for diagnosing the texture of pituitary tumors using unbalanced sequence image data. Firstly, for the small sample problem in our pituitary tumor MRI image dataset where T1 and T2 sequence data are unbalanced (due to data missing) and under-sampled, our method uses a CycleGAN (Cycle-Consistent Adversarial Networks) model for domain conversion to obtain fully sampled MRI spatial sequence. Then, it uses a DenseNet (Densely Connected Convolutional Networks)-ResNet(Deep Residual Networks) based Autoencoder framework to optimize the feature extraction process for pituitary tumor image data. Finally, to take advantage of sequence data, it uses a CRNN (Convolutional Recurrent Neural Network) model to classify pituitary tumors based on their predicted softness levels. RESULTS: Experiments show that our method is the best in terms of efficiency and accuracy (91.78%) compared to other methods. CONCLUSIONS: We propose a semi-supervised method for grading pituitary tumor texture. This method can accurately determine the softness level of pituitary tumors, which provides convenience for surgical selection and prognosis, and improves the diagnostic efficiency of pituitary tumors.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Hipofisárias/diagnóstico por imagem , Conjuntos de Dados como Assunto , Humanos , Gradação de Tumores , Redes Neurais de Computação , Neoplasias Hipofisárias/classificação , Aprendizado de Máquina Supervisionado
2.
Comput Math Methods Med ; 2019: 7289273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662786

RESUMO

Meningioma is the second most commonly encountered tumor type in the brain. There are three grades of meningioma by the standards of the World Health Organization. Preoperative grade prediction of meningioma is extraordinarily important for clinical treatment planning and prognosis evaluation. In this paper, we present a new deep learning model for assisting automatic prediction of meningioma grades to reduce the recurrence of meningioma. Our model is based on an improved LeNet-5 model of convolutional neural network (CNN) and does not require the extraction of the diseased tissue, which can greatly enhance the efficiency. To address the issue of insufficient and unbalanced clinical data of meningioma images, we use an oversampling technique which allows us to considerably improve the accuracy of classification. Experiments on large clinical datasets show that our model can achieve quite high accuracy (i.e., as high as 83.33%) for the classification of meningioma images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Gradação de Tumores , Algoritmos , Aprendizado Profundo , Humanos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Invasividade Neoplásica , Recidiva Local de Neoplasia , Redes Neurais de Computação , Recidiva , Reprodutibilidade dos Testes , Risco , Software
3.
Comput Math Methods Med ; 2018: 3052852, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30675176

RESUMO

In this paper, we propose a novel algorithm for medical image segmentation, which combines the density peaks clustering (DPC) with the fruit fly optimization algorithm, and it has the following advantages. Firstly, it avoids the problem of DPC that needs to artificially select parameters (such as the number of clusters) in its decision graph and thus can automatically determine their values. Secondly, our algorithm uses random step size, instead of the fixed step size as in the fruit fly optimization algorithm, which helps avoid falling into local optima. Thirdly, our algorithm selects the cut-off distance and the cluster centers using the image entropy value and can better capture the structures of the image. Experiments on benchmark dataset and proprietary dataset show that our algorithm can adaptively segment medical images with faster convergence and better robustness.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Animais , Encéfalo/diagnóstico por imagem , Análise por Conglomerados , Drosophila/fisiologia , Alimentos , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Neuroimagem/estatística & dados numéricos , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA