RESUMO
DNA repair is strongly associated with tumor resistance to radiotherapy and chemotherapy. WD repeat and HMG-box DNA binding protein 1 (WDHD1) is a key adaptor for homologous recombination repair of DNA, and its overexpression is relevant to the poor prognosis of many tumor patients. We previously have identified and validated bazedoxifene (BZA), which had 60% inhibitory rate on WDHD1 in MCF7 cells at 10 µM, from the Food and Drug Administration-approved compound library. Here, we initially established the binding model of BZA, synthesized and evaluated eight BZA analogs. Further, we detailed the use of molecular dynamics simulations to provide insights into the basis for activity against WDHD1. This binding mode will be instructive for the development of new WDHD1 degraders.
Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Estados Unidos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Células MCF-7 , Proteínas de Ligação a DNARESUMO
Multifunctional responsive hydrogels hold significant promise for diabetic foot ulcer (DFU) treatment, though their complex design and manufacturing present challenges. This study introduces a novel supramolecular guanosine-phenylboronic-chlorogenic acid (GBC) hydrogel developed using a dynamic covalent strategy. The hydrogel forms through guanosine quadruplex assembly in the presence of potassium ions and chlorogenic acid (CA) linkage via dynamic borate bonds. GBC hydrogels exhibit pH and glucose responsiveness, releasing more chlorogenic acid under acidic and high glucose conditions due to borate bond dissociation and G-quadruplex (G4) hydrogel disintegration. Experimental results indicate that GBC hydrogels exhibit good self-healing, shear-thinning, injectability, and swelling properties. Both in vitro and in vivo studies demonstrate the GBC hydrogel's good biocompatibility, ability to eliminate bacteria and reactive oxygen species (ROS), facilitate macrophage polarization from the M1 phenotype to the M2 phenotype (decreasing CD86 expression and increasing CD206 expression), exhibit anti-inflammatory effects (reducing TNF-α expression and increasing IL-10 expression), and promote angiogenesis (increasing VEGF, CD31, and α-SMA expression). Thus, GBC hydrogels accelerate DFU healing and enhance tissue remodeling and collagen deposition. This work provides a new approach to developing responsive hydrogels to expedite DFU healing.
RESUMO
SUMOylation and deSUMOylation plays an important role in DNA damage response and the formation of radiotherapy resistance. SENP1 is the main specific isopeptidase to catalyze deSUMOylation modification. Inhibiting SENP1 upregulates cancer cell radiosensitivity and it becomes a promising target for radiosensitization. Herein, based on the structure of ursolic acid (UA), a total of 53 pentacyclic triterpene derivatives were designed and synthesized as SENP1 inhibitors. Ten derivatives exhibited better SENP1 inhibitory activities than UA and the preliminary structure-activity relationship was discussed. Most of the UA derivatives were low-cytotoxic, among which compound 36 showed the best radiosensitizing activity with the SER value of 1.45. It was the first study to develop small molecular SENP1 inhibitors as radiosensitizers.
Assuntos
Antineoplásicos/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Ácido UrsólicoRESUMO
Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.
Assuntos
Necroptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Humanos , Imidazóis/química , Imidazóis/farmacologia , Necrose/tratamento farmacológico , Oximas/química , Oximas/farmacologia , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Transdução de SinaisRESUMO
Inhibiting bacterial growth and promoting angiogenesis are essential for enhancing wound healing in diabetic patients. Excessive oxidative stress at the wound site can also lead to an accumulation of reactive oxygen species. To address these challenges, a smart thermosensitive hydrogel loaded with therapeutic agents was developed. This formulation features self-assembled nanoparticles named CIZ, consisting of chlorogenic acid (CA), indocyanine green (ICG), and zinc ions (Zn2+). These nanoparticles are loaded into a chitosan-ß-glycerophosphate hydrogel, named CIZ@G, which enables rapid gel formation under photothermal effects. The hydrogel demonstrates good biocompatibility and effectively releases drugs into diabetic foot ulcers (DFU) wound. Benefiting from the dual actions of CA and zinc ions, the hydrogel exhibits potent antioxidative and anti-inflammatory effects, enhances the expression of vascular endothelial growth factor (VEGF) and Platelet endothelial cell adhesion molecule-1 (CD31), and promotes angiogenesis. Both in vitro and in vivo experiments confirm that CIZ@G can effectively inhibit the growth of Staphylococcus aureus post-laser irradiation and accelerate wound remodeling within 14 days. This approach offers a new strategy for the treatment of diabetic foot ulcers (DFU), potentially transforming patient care in this challenging clinical area.