RESUMO
We report a rapid, efficient, and scope-extensive approach for the late-stage electrochemical diselenation of BODIPYs. Photophysical analyses reveal red-shifted absorption - corroborated by TD-DFT and DLPNO-STEOM-CCSD computations - and color-tunable emission with large Stokes shifts in the selenium-containing derivatives compared to their precursors. In addition, due to the presence of the heavy Se atoms, competitive ISC generates triplet states which sensitize 1 O2 and display phosphorescence in PMMA films at RT and in a frozen glass matrix at 77â K. Importantly, the selenium-containing BODIPYs demonstrate the ability to selectively stain lipid droplets, exhibiting distinct fluorescence in both green and red channels. This work highlights the potential of electrochemistry as an efficient method for synthesizing unique emission-tunable fluorophores with broad-ranging applications in bioimaging and related fields.
Assuntos
Selênio , Estrutura Molecular , Compostos de Boro , Fluorescência , Corantes FluorescentesRESUMO
Invited for the cover of this issue are the groups of Holger Braunschweig at the Julius-Maximilians-Universität Würzburg, Germany and Eufrânio N. da Silva Júnior at the Universidade Federal de Minas Gerais, UFMG, Brazil. The image depicts the electrochemical synthesis of selenium-containing BODIPY molecules with lightning symbolizing the electrifying synthetic process, while the surrounding elemental chaos hints at the red-shifted absorption and emission and the transformative photophysical properties of these new compounds. Read the full text of the article at 10.1002/chem.202303883.
RESUMO
The stabilization of simple, highly reactive cationic species in molecular complexes represents an important strategy to isolate and characterize compounds with uncommon or even unprecedented structural motifs and properties. Here we report the synthesis, isolation, and full characterization of chlorido-bismuth dications, stabilized only by monodentate dimethylsulfoxide (dmso) ligands: [BiCl(dmso)6][BF4]2 (1) and [BiCl(µ2-dmso)(dmso)4]2[BF4]4 (2). These compounds show unusual distorted pentagonal bipyramidal coordination geometries along with high Lewis acidities and have been analyzed by multinuclear NMR spectroscopy, elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, and density functional theory calculations. Attempts to generate the bromido- and iodido-analogs gave dmso-stabilized tricationic bismuth species.
RESUMO
The increasing presence of 1,1,1,2-tetrafluoroethane (CF3CH2F) in the atmosphere has prompted detailed studies into its complex photodissociation behavior. Experiments focusing on CF3CH2F irradiation have unveiled an array of ions, with the persistent observation of the rearrangement product CHF2+ not yet fully understood. In this work, we combine density functional theory, coupled-cluster calculations with a complete basis set formalism, and atom-centered density matrix propagation molecular dynamics to investigate the energetics and dynamics of different potential pathways leading to CHF2+. We found that the two-body dissociation pathway involving an HF rearrangement, which was previously considered complex for CHF2+ formation, is actually straightforward but not likely due to the facile loss of HF. In contrast, our calculations reveal that the H elimination pathway, once thought of as a potential route to CHF2+, is not only comparably disadvantageous from both thermodynamic and kinetic points of view but also does not align with experimental data, particularly the lack of a rebound peak at m/z 101-102. We establish that the formation of CHF2+ is predominantly via the HF elimination channel, a conclusion experimentally corroborated by studies involving the trifluoroethylene cation CF2CHF+, a key intermediate in this process.
RESUMO
Radicals of the lightest group 13 element, boron, are well established and observed in numerous forms. In contrast to boron, radical chemistry involving the heavier group 13 elements (aluminum, gallium, indium, and thallium) remains largely underexplored, primarily attributed to the formidable synthetic challenges associated with these elements. Herein, we report the synthesis and isolation of planar and twisted conformers of a doubly CAAC (cyclic alkyl(amino)carbene)-radical-substituted dialane. Extensive characterization through spectroscopic analyses and X-ray crystallography confirms their identity, while quantum chemical calculations support their open-shell nature and provide further insights into their electronic structures. The dialane-connected diradicals exhibit high susceptibility to oxidation, as evidenced by electrochemical measurements and reactions with o-chloranil and a variety of organic azides. This study opens a previously uncharted class of dialuminum systems to study, broadening the scope of diradical chemistry and its potential applications.
RESUMO
The 1,3-addition of 1,2-diaryl-1,2-dibromodiboranes (B2Br2Ar2) to trans-[W(N2)2(dppe)2] (dppe = κ2-(Ph2PCH2)2), which is accompanied by a Br-Ar substituent exchange between the two boron atoms, is followed by a spontaneous rearrangement of the resulting tungsten diboranyldiazenido complex to a 2-aza-1,3-diboraallenylimido complex displaying a linear, cumulenic B=N=B moiety. This rearrangement involves the splitting of both the B-B and N=N bonds of the N2B2 ligand, formal insertion of a BAr boranediyl moiety into the N=N bond, and coordination of the remaining BArBr boryl moiety to the terminal nitrogen atom. Density functional theory calculations show that the reaction proceeds via a cyclic NB2 intermediate, followed by dissociation into a tungsten nitrido complex and a linear boryliminoborane, which recombine by adduct formation between the nitrido ligand and the electron-deficient iminoborane boron atom. The linear B=N=B moiety also undergoes facile 1,2-addition of Brønsted acids (HY = HOPh, HSPh, and H2NPh) with concomitant Y-Br substituent exchange at the terminal boron atom, yielding cationic (borylamino)borylimido tungsten complexes.
RESUMO
The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.
RESUMO
The B-nucleophilic 9H-9-borafluorene dianion reacts with 9-chloro-9-silafluorene to afford air- and moisture-stable silylborate salts M[Ar2 (H)B-Si(H)Ar2 ] (M[HBSiH], M=Li, Na). Li[HBSiH] and Me3 SiCl give the B-pyridine adduct Ar2 (py)B-Si(H)Ar2 ((py)BSiH) or the chlorosilane Li[Ar2 (H)B-Si(Cl)Ar2 ] (Li[HBSiCl]) in C6 H6 -pyridine or THF. In both cases, the first step is H- abstraction at the B center. The resulting free borane subsequently binds a py or thf ligand. While the py adduct is stable at room temperature, the thf adduct undergoes a 1,2-H shift via the cyclic B(µ-H)Si intermediate BHSi, which is afterwards attacked at the Si atom by a Cl- ion to give Li[HBSiCl]. DFT calculations were employed to support the proposed reaction mechanism and to characterize the electronic structure of BHSi. Treatment of Li[HBSiCl] with the N-heterocyclic carbene IMe introduces the neutral donor at the Si atom and leads to Ar2 (H)B-Si(IMe)Ar2 (HBSi(IMe)), a donor-acceptor-stabilized silylene.
RESUMO
The reactions of a cyclic alkyl(amino)carbene (CAAC)-stabilized beryllium radical with E2 Ph2 (E=S, Se, Te) and of a beryllole with HEPh (E=S, Se) yield the corresponding beryllium phenylchalcogenides, including the first structurally authenticated beryllium selenide and telluride complexes. Calculations show that their Be-E bonds are best described by the interaction between the Be+ and E- fragments, with Coulombic forces accounting for ca. 55 % of the attraction and orbital interactions dominated by the σ component.
RESUMO
The discovery of C60, C60+, and C70 in the interstellar medium has ignited a profound interest in the astrochemistry of fullerene and related systems. In particular, the presence of diffuse interstellar bands and their association with C60+ has led to the hypothesis that hydrogenated derivatives, known as fulleranes, may also exist in the interstellar medium and contribute to these bands. In this study, we systematically investigated the structural and spectroscopic properties of C60Hn+q (n = 0-4, q = 0,1) using an automated global minimum search and density functional theory calculations. Our results revealed novel global minimum structures for C60H2 and C60H4, distinct from previous reports. Notably, all hydrogenated fullerenes exhibited lower ionization potentials and higher proton affinities compared to C60. From an astrochemical perspective, our results exposed the challenges in establishing definitive spectroscopic criteria for detecting fulleranes using mid-infrared and UV-Vis spectroscopies. However, we successfully identified distinct electronic transitions in the near-infrared range that serve as distinctive signatures of cationic fulleranes. We strongly advocate for further high-resolution experimental studies to fully explore the potential of these transitions for the interstellar detection of fulleranes.
RESUMO
Carbene-stabilized diborynes of the form LBBL (L=N-heterocyclic carbene (NHC) or cyclic alkyl(amino)carbene (CAAC)) induce rapid, high yielding, intermolecular ortho-C-H borylation at N-heterocycles at room temperature. A simple pyridyldiborene is formed when an NHC-stabilized diboryne is combined with pyridine, while a CAAC-stabilized diboryne leads to activation of two pyridine molecules to give a tricyclic alkylideneborane, which can be forced to undergo a further H-shift resulting in a zwitterionic, doubly benzo-fused 1,3,2,5-diazadiborinine by heating. Use of the extended N-heteroaromatic quinoline leads to a borylmethyleneborane under mild conditions via an unprecedented boron-carbon exchange process.
RESUMO
The stepwise reduction of a doubly cyclic alkyl(amino)carbene (CAAC)-stabilized 2,3-bis(dibromoboryl)naphthalene enables the isolation of the corresponding mono- and bis(boryl) radicals (one- and two-electron reduction), a 2π-aromatic 1,2-diborete (four-electron reduction), which shows biradical character in the solid-state EPR spectrum, and its cyclic bis(alkylidene)diboron dianion (six-electron reduction). The X-ray crystallographic analysis of the diborete shows a highly strained and twisted four-membered ring with a formal cis-diborene motif featuring a very elongated B-B double bond. Calculations based on DFT and multireference approaches reveal that the diborete possesses an open-shell singlet biradicaloid ground state, which is slightly energetically preferred to its EPR-active triplet-state congener. The addition of CO to the diborete resulted in B-B bond splitting and the formation of the corresponding closed-shell singlet, doubly Lewis base-stabilized bis(borylene), whereas a twofold γ insertion of phenyl azide generates a 1,3-bis(diazenyl)-1,3,2,4-diazadiboretidine.
RESUMO
Computational investigations were carried out to probe the potential of several dicoordinate, singly base-stabilized borylenes of the form [LâBR] (L=neutral Lewis base) in dinitrogen binding. The calculated reaction free energies and activation barriers associated with the formation of mono- and diborylene-N2 adducts suggest the presence of thermally surmountable kinetic barriers towards their possible isolation. Our results show that the exergonicity of dinitrogen activation and fixation is linearly dependent on the natural charge at the boron center, which can be tuned to design novel boron-based compounds with potential applications to small-molecule activation. EDA-NOCV analysis reveals strong binding of dinitrogen to these base-stabilized borylenes.
Assuntos
Boro , Nitrogênio , Compostos de Boro , Nitrogênio/químicaRESUMO
Invited for the cover of this issue are Felipe Fantuzzi, Holger Braunschweig, Ashwiniâ K. Phukan and co-workers at the University of Kent, Julius-Maximilians-Universität Würzburg and Tezpur University. The image depicts a borylene "fishing" for a molecule of nitrogen. Read the full text of the article at 10.1002/chem.20210123.
RESUMO
The reaction of a cyclic alkyl(amino)carbene (CAAC)-stabilized thiazaborolo[5,4-d]thiazaborole (TzbTzb) with strong Brønsted acids, such as HCl, HOTf (Tf=O2 SCF3 ) and [H(OEt2 )2 ][BArF 4 ] (ArF =3,5-(CF3 )2 C6 H3 ), results in the protonation of both TzbTzb nitrogen atoms. In each case X-ray crystallographic data show coordination of the counteranions (Cl- , OTf- , BArF 4 - ) or solvent molecules (OEt2 ) to the doubly protonated fused heterocycle via hydrogen-bonding interactions, the strength of which strongly influences the 1 Hâ NMR shift of the NH protons, enabling tuning of both the visible (yellow to red) and fluorescence (green to red) colors of these salts. DFT calculations reveal that the hydrogen bonding of the counteranion or solvent to the protonated nitrogen centers affects the intramolecular TzbTzb-to-CAAC charge transfer character involved in the S0 âS1 transition, ultimately enabling fine-tuning of their absorption and emission spectral features.
Assuntos
Boro , Prótons , Ânions/química , Ligação de Hidrogênio , Nitrogênio , SolventesRESUMO
A one-pot synthesis of a CAAC-stabilized, unsymmetrical, cyclic diborene was achieved via consecutive two-electron reduction steps from an adduct of CAAC and B2 Br4 (SMe2 )2 . Theoretical studies revealed that this diborene has a considerably smaller HOMO-LUMO gap than those of reported NHC- and phosphine-supported diborenes. Complexation of the diborene with [AuCl(PCy3 )] afforded two diborene-AuI πâ complexes, while reaction with DurBH2 , P4 and a terminal acetylene led to the cleavage of B-H, P-P, and C-C πâ bonds, respectively. Thermal rearrangement of the diborene gave an electron-rich cyclic alkylideneborane, which readily coordinated to AgI via its B=C double bond.
RESUMO
A 1,8-naphthyridine diphosphine (NDP) reacts with boron-containing Lewis acids to generate complexes featuring a number of different naphthyridine bonding modes. When exposed to diborane B2 Br4 , NDP underwent self-deprotonation to afford [NDP-B2 Br3 ]Br, an unsymmetrical diborane comprised of four fused rings. The reaction of two equivalents of monoborane BBr3 and NDP in a non-polar solvent provided the simple phosphine-borane adduct [NDP(BBr3 )2 ], which then underwent intramolecular halide abstraction to furnish the salt [NDP-BBr2 ][BBr4 ], featuring a different coordination mode from that of [NDP-B2 Br3 ]Br. Direct deprotonation of NDP by KHMDS or PhCH2 K generates mono- and dipotassium reagents, respectively. The monopotassium reagent reacts with one or half an equivalent of B2 (NMe2 )2 Cl2 to afford NDP-based diboranes with three or four amino substituents.
RESUMO
The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η6 coordination to the generation of Mn2 systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated.
RESUMO
Invited for the cover of this issue is Bernd Engels, Holger Braunschweig, Volker Engel and their coworkers at University of Würzburg. The image depicts bridged boron compounds which possess fascinating relationships between their composition and their geometrical and electronic structures, the latter ranging from closed-shell to biradical triplet or singlet ground state. Read the full text of the article at 10.1002/chem.202004619.
RESUMO
Twisted boron-based biradicals featuring unsaturated C2 R2 (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C2 R2 -bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals.