Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850911

RESUMO

Cellular vehicle-to-everything (C-V2X) is a communication technology that supports various safety, mobility, and environmental applications, given its higher reliability properties compared to other communication technologies. The performance of these C-V2X-enabled intelligent transportation system (ITS) applications is affected by the performance of the C-V2X communication technology (mainly packet loss). Similarly, the performance of the C-V2X communication is dependent on the vehicular traffic density which is affected by the traffic mobility patterns and vehicle routing strategies. Consequently, it is critical to develop a tool that can simulate, analyze, and evaluate the mutual interactions of the transportation and communication systems at the application level to quantify the benefits of C-V2X-enabled ITS applications realistically. In this paper, we demonstrate the benefits gained when using C-V2X Vehicle-to-Infrastructure (V2I) communication technology in an energy-efficient dynamic routing application. Specifically, we develop a Connected Energy-Efficient Dynamic Routing (C-EEDR) application using C-V2X as a communication medium in an integrated vehicular traffic and communication simulator (INTEGRATION). The results demonstrate that the C-EEDR application achieves fuel savings of up to 16.6% and 14.7% in the IDEAL and C-V2X communication cases, respectively, for a peak hour demand on the downtown Los Angeles network considering a 50% level of market penetration of connected vehicles. The results demonstrate that the fuel savings increase with increasing levels of market penetration at lower traffic demand levels (25% and 50% the peak demand). At higher traffic demand levels (75% and 100%), the fuel savings increase with increasing levels of market penetration with maximum benefits at a 50% market penetration rate. Although the communication system is affected by the high density of vehicles at the high traffic demand levels (75% and 100% the peak demand), the C-EEDR application manages to perform reliably, producing system-wide fuel consumption savings.The C-EEDR application achieves fuel savings of 15.2% and 11.7% for the IDEAL communication and 14% and 9% for the C-V2X communication at the 75% and 100% market penetration rates, respectively. Finally, the paper demonstrates that the C-V2X communication constraints only affect the performance of the C-EEDR application at the full demand level when the market penetration of the connected vehicles exceeds 25%. This degradation, however, is minimal (less than a 2.5% reduction in fuel savings).

2.
Sensors (Basel) ; 21(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803583

RESUMO

The transportation system has evolved into a complex cyber-physical system with the introduction of wireless communication and the emergence of connected travelers and connected automated vehicles. Such applications create an urgent need to develop high-fidelity transportation modeling tools that capture the mutual interaction of the communication and transportation systems. This paper addresses this need by developing a high-fidelity, large-scale dynamic and integrated traffic and direct cellullar vehicle-to-vehicle and vehicle-to-infrastructure (collectively known as V2X) modeling tool. The unique contributions of this work are (1) we developed a scalable implementation of the analytical communication model that captures packet movement at the millisecond level; (2) we coupled the communication and traffic simulation models in real-time to develop a fully integrated dynamic connected vehicle modeling tool; and (3) we developed scalable approaches that adjust the frequency of model coupling depending on the number of concurrent vehicles in the network. The proposed scalable modeling framework is demonstrated by running on the Los Angeles downtown network considering the morning peak hour traffic demand (145,000 vehicles), running faster than real-time on a regular personal computer (1.5 h to run 1.86 h of simulation time). Spatiotemporal estimates of packet delivery ratios for downtown Los Angeles are presented. This novel modeling framework provides a breakthrough in the development of urgently needed tools for large-scale testing of direct (C-V2X) enabled applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA