Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5108-5117, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367279

RESUMO

Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents).


Assuntos
Estruturas Metalorgânicas , Compostos Organometálicos , Ácidos Ftálicos , Estruturas Metalorgânicas/química , Zircônio/química , Biomimética , Compostos Organometálicos/química , Peroxidase do Rábano Silvestre
2.
J Am Chem Soc ; 146(8): 5661-5668, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38353616

RESUMO

Organophosphorus chemicals, including chemical warfare agents (CWAs) and insecticides, are acutely toxic materials that warrant capture and degradation. Metal-organic frameworks (MOFs) have emerged as a class of tunable, porous, crystalline materials capable of hydrolytically cleaving, and thus detoxifying, several organophosphorus nerve agents and their simulants. One such MOF is M-MFU-4l (M = metal), a bioinspired azolate framework whose metal node is composed of a variety of divalent first-row transition metals. While Cu-MFU-4l and Zn-MFU-4l are shown to rapidly degrade CWA simulants, Ni-MFU-4l and Co-MFU-4l display drastically lower activities. The lack of reactivity was hypothesized to arise from the strong binding of the phosphate product to the node, which deactivates the catalyst by preventing turnover. No such study has provided detailed insight into this mechanism. Here, we leverage isothermal titration calorimetry (ITC) to monitor the binding of an organophosphorus compound with the M-MFU-4l series to construct a complete thermodynamic profile (Ka, ΔH, ΔS, ΔG) of this interaction. This study further establishes ITC as a viable technique to probe small differences in thermodynamics that result in stark differences in material properties, which may allow for better design of first-row transition metal MOF catalysts for organophosphorus hydrolysis.

3.
J Am Chem Soc ; 146(3): 2141-2150, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38191288

RESUMO

Control of humidity within confined spaces is critical for maintaining air quality and human well-being, with implications for environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites. However, existing techniques rely on energy-intensive electrically driven equipment or complex temperature and humidity control (THC) systems, resulting in imprecision and inconvenience. The development of innovative techniques and materials capable of simultaneously meeting the stringent requirements of practical applications holds the key to creating intelligent and energy-efficient humidity control devices. In this study, we introduce chiral reticular chemistry as a tailored synthetic approach, targeting a highly porous hea topological framework characterized by intrinsic interpenetrating pore architecture. This groundbreaking design successfully circumvents the traditional compromise between the pore volume and hydrolytic stability. Our metal-organic framework (MOF) exhibits an extraordinary working capacity, setting a new record at 1.35 g g-1 within the relative humidity (RH) range of 40-60%, without exhibiting hysteresis. Consequently, it emerges as a state-of-the-art candidate for intelligent humidity regulation within confined spaces. Utilizing single-crystal X-ray measurements and molecular simulations, we unequivocally elucidate the mechanism of water clustering and pore filling, underscoring the pivotal role of the linker functionality in governing the water seeding process. Our findings represent a significant advancement in the field, paving the way for the development of highly efficient humidity control technologies and offering promising solutions for diverse real-world scenarios.

4.
J Am Chem Soc ; 146(6): 3955-3962, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295514

RESUMO

The local environment of a metal active site plays an important role in affecting the catalytic activity and selectivity. In recent studies, tailoring the behavior of a molybdenum-based active site via modulation of the first coordination sphere has led to improved thioanisole oxidation performance, but disentangling electronic effects from steric influences that arise from these modifications is nontrivial, especially in heterogeneous systems. To this end, the tunability of metal-organic frameworks (MOFs) makes them promising scaffolds for controlling the coordination sphere of a heterogeneous, catalytically active metal site while offering additional attractive features such as crystallinity and high porosity. Herein, we report a variety of MOF-supported Mo species, which were investigated for catalytic thioanisole oxidation to methyl phenyl sulfoxide and/or methyl phenyl sulfone using tert-butyl hydroperoxide (tBHP) as the oxidant. In particular, MOFs of contrasting node architectures were targeted, presenting a unique opportunity to investigate the stereoelectronic control of Mo active sites in a systematic manner. A Zr6-based MOF, NU-1000, was employed along with its sulfated analogue Zr6-based NU-1000-SO4 to anchor a dioxomolybdenum species, which enabled examination of support-mediated active site polarizability on catalytic performance. In addition, a MOF containing a mixed metal node, Mo-MFU-4l, was used to probe the stereoelectronic impact of an N-donor ligand environment on the catalytic activity of the transmetalated Mo center. Characterization techniques, including single crystal X-ray diffraction, were concomitantly used with reaction time course profiles to better comprehend the dynamics of different Mo active sites, thus correlating structural change with activity.

5.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593469

RESUMO

Hydrolytically stable materials exhibiting a wide range of programmable water sorption behaviors are crucial for on-demand water sorption systems. While notable advancements in employing metal-organic frameworks (MOFs) as promising water adsorbents have been made, developing a robust yet easily tailorable MOF scaffold for specific operational conditions remains a challenge. To address this demand, we employed a topology-guided linker installation strategy using NU-600, which is a zirconium-based MOF (Zr-MOF) that contains three vacant crystallographically defined coordination sites. Through a judicious selection of three N-heterocyclic auxiliary linkers of specific lengths, we installed them into designated sites, giving rise to six new MOFs bearing different combinations of linkers in predetermined positions. The resulting MOFs, denoted as NU-606 to NU-611, demonstrate enhanced structural stability against capillary force-driven channel collapse during water desorption due to the increased connectivity of the Zr6 clusters in the resulting MOFs. Furthermore, incorporating these auxiliary linkers with various hydrophilic N sites enables the systematic modulation of the pore-filling pressure from about 55% relative humidity (RH) for the parent NU-600 down to below 40% RH. This topology-driven linker installation strategy offers precise control of water sorption properties for MOFs, highlighting a facile route to design MOF adsorbents for use in water sorption applications.

6.
J Am Chem Soc ; 146(22): 15130-15142, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795041

RESUMO

Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior. Notably, Ti8Ce2-BA (BA denotes benzoic acid) manifests a distinctive two-step profile during the CO2 adsorption, accompanied by a hysteresis loop. This observation marks a new instance within the metal oxide cluster field. Of intrigue, the presence of unsaturated Ce(IV) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between the CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating metal-oxo clusters with structural flexibility and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships.

7.
J Am Chem Soc ; 146(10): 6557-6565, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38271670

RESUMO

Despite global efforts to reduce carbon dioxide (CO2) emissions, continued industrialization threatens to exacerbate climate change. This work investigates methods to capture CO2, with a focus on the SIFSIX-3-Ni metal-organic framework (MOF) as a direct air capture (DAC) sorbent. SIFSIX-3-Ni exhibits promising CO2 adsorption properties but suffers from degradation processes under accelerated aging, which are akin to column regeneration conditions. Herein, we have grown the largest SIFSIX-3-Ni single crystals to date, facilitating single crystal X-ray diffraction analyses that enabled direct observation of the H2O and CO2 dynamics through adsorption and desorption. In addition, a novel space group (I4/mcm) for the SIFSIX-3-Ni is identified, which provided insights into structural transitions within the framework and elucidated water's role in degrading CO2 uptake performance as the material ages. In situ X-ray scattering methods revealed long-range and local structural transformations associated with CO2 adsorption in the framework pores as well as a temperature-dependent desorption mechanism. Pair distribution function analysis revealed a partial decomposition to form nonporous single-layer nanosheets of edge-sharing nickel oxide octahedra upon aging. The formation of these nanosheets is irreversible and reduces the amount of active material for the CO2 sorption. These findings provide crucial insights for the development of efficient and stable DAC sorbents, effectively reducing greenhouse gases, and suggest avenues for enhancing MOF stability under practical DAC conditions.

8.
J Am Chem Soc ; 146(6): 3943-3954, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295342

RESUMO

CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as postcombustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolate linkers, are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve the uptake of CO2 in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH─a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of a high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications.

9.
Langmuir ; 40(15): 8024-8034, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574282

RESUMO

Sulfur dioxide (SO2) is a harmful acidic gas generated from power plants and fossil fuel combustion and represents a significant health risk and threat to the environment. Benzimidazole-linked polymers (BILPs) have emerged as a promising class of porous solid adsorbents for toxic gases because of their chemical and thermal stability as well as the chemical nature of the imidazole moiety. The performance of BILPs in SO2 capture was examined by synergistic experimental and theoretical studies. BILPs exhibit a significantly high SO2 uptake of up to 8.5 mmol g-1 at 298 K and 1.0 bar. The density functional theory (DFT) calculations predict that this high SO2 uptake is due to the dipole-dipole interactions between SO2 and the functionalized polymer frames through O2S(δ+)···N(δ-)-imine and O═S═O(δ-)···H(δ+)-aryl and intermolecular attraction between SO2 molecules (O═S═O(δ-)···S(δ+)O2). Moderate isosteric heats of adsorption (Qst ≈ 38 kJ mol-1) obtained from experimental SO2 uptake studies are well supported by the DFT calculations (≈40 kJ mol-1), which suggests physisorption processes enabling rapid adsorbent regeneration for reuse. Repeated adsorption experiments with almost identical SO2 uptake confirm the easy regeneration and robustness of BILPs. Moreover, BILPs possess very high SO2 adsorption selectivity at low concentration over carbon dioxide (CO2), methane (CH4), and nitrogen (N2): SO2/CO2, 19-24; SO2/CH4, 118-113; SO2/N2, 600-674. This study highlights the potential of BILPs in the desulfurization of flue gas or other gas mixtures through capturing trace levels of SO2.

10.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078602

RESUMO

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

11.
J Am Chem Soc ; 145(25): 13869-13878, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311062

RESUMO

The interplay of primary organic ligands and inorganic secondary building units (SBUs) has led to a continual boom of reticular chemistry, particularly metal-organic frameworks (MOFs). Subtle variations of organic ligands can have a significant impact on the ultimate structural topology and consequently, the material's function. However, the role of ligand chirality in reticular chemistry has rarely been explored. In this work, we report the organic ligand chirality-controlled synthesis of two zirconium-based MOFs (Spiro-1 and Spiro-3) with distinct topological structures as well as a temperature-controlled formation of a kinetically stable phase (Spiro-4) based on the carboxylate-functionalized inherently axially chiral 1,1'-spirobiindane-7,7'-phosphoric acid ligand. Specifically, Spiro-1 is a homochiral framework comprising only enantiopure S-spiro ligands and has a unique 4,8-connected sjt topology with large 3D interconnected cavities, while Spiro-3 contains equal amounts of S- and R-spiro ligands, resulting in a racemic framework of 6,12-connected edge-transitive alb topology with narrow channels. Interestingly, the kinetic product Spiro-4 obtained with racemic spiro ligands is built of both hexa- and nona-nuclear zirconium clusters acting as 9- and 6-connected nodes, respectively, giving rise to a newly discovered azs net. Notably, the preinstalled highly hydrophilic phosphoric acid groups combined with large cavity, high porosity, and outstanding chemical stability endow Spiro-1 with remarkable water vapor sorption performance, whereas Spiro-3 and Spiro-4 show poor performances due to inappropriate pore systems and structural fragility upon the water adsorption/desorption process. This work highlights the important role of ligand chirality in manipulating the framework topology and function and would further enrich the development of reticular chemistry.

12.
J Am Chem Soc ; 145(5): 3055-3063, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696577

RESUMO

Reticular chemistry allows for the rational assembly of metal-organic frameworks (MOFs) with designed structures and desirable functionalities for advanced applications. However, it remains challenging to construct multi-component MOFs with unprecedented complexity and control through insertion of secondary or ternary linkers. Herein, we demonstrate that a Zr-based MOF, NU-600 with a (4,6)-connected she topology, has been judiciously selected to employ a linker installation strategy to precisely insert two linear linkers with different lengths into two crystallographically distinct pockets in a one-pot, de novo reaction. We reveal that the hydrolytic stability of these linker-inserted MOFs can be remarkably reinforced by increasing the Zr6 node connectivity, while maintaining comparable water uptake capacity and pore-filling pressure as the pristine NU-600. Furthermore, introducing hydrophilic -OH groups into the linear linker backbones to construct multivariate MOFs can effectively shift the pore-filling step to lower partial pressures. This methodology demonstrates a powerful strategy to reinforce the structural stability of other MOF frameworks by increasing the connectivity of metal nodes, capable of encouraging developments in fundamental sciences and practical applications.

13.
J Am Chem Soc ; 145(30): 16383-16390, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37463331

RESUMO

Proteins play important roles in the therapeutic, medical diagnostic, and chemical catalysis industries. However, their potential is often limited by their fragile and dynamic nature outside cellular environments. The encapsulation of proteins in solid materials has been widely pursued as a route to enhance their stability and ease of handling. Nevertheless, the experimental investigation of protein interactions with rationally designed synthetic hosts still represents an area in need of improvement. In this work, we leveraged the tunability and crystallinity of metal-organic frameworks (MOFs) and developed a series of crystallographically defined protein hosts with varying chemical properties. Through systematic studies, we identified the dominating mechanisms for protein encapsulation and developed a host material with well-tailored properties to effectively encapsulate the protein ubiquitin. Specifically, in our mesoporous hosts, we found that ubiquitin encapsulation is thermodynamically favored. A more hydrophilic encapsulation environment with favorable electrostatic interactions induces enthalpically favored ubiquitin-MOF interactions, and a higher pH condition reduces the intraparticle diffusion barrier, both leading to a higher protein loading. Our findings provide a fundamental understanding of host-guest interactions between proteins and solid matrices and offer new insights to guide the design of future protein host materials to achieve optimal protein loading. The MOF modification technique used in this work also demonstrates a facile method to develop materials easily customizable for encapsulating proteins with different surface properties.


Assuntos
Estruturas Metalorgânicas , Ubiquitina , Catálise , Difusão , Eletricidade Estática
14.
J Am Chem Soc ; 145(24): 13195-13203, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37305923

RESUMO

Polymer/metal-organic framework (MOF) composites have been widely studied for their favorable combination of polymer flexibility and MOF crystallinity. While traditional polymer-coated MOFs maximize the polymer properties at the surface, the dramatic loss of MOF porosity due to blockage by the nonporous polymeric coating remains a problem. Herein, we introduce intrinsically microporous synthetic allomelanin (AM) as a porous coating on the zirconium-based MOF (Zr-MOF) UiO-66 via an in situ surface-constrained oxidative polymerization of the AM precursor, 1,8-dihydroxynaphthalene (1,8-DHN). Transmission electron microscopy images verify the formation of well-defined nanoparticles with a core-shell morphology (AM@UiO-66), and nitrogen sorption isotherms indicate the porosity of the UiO-66 core remains constant and is not disturbed by the AM coating. Notably, such a strategy could be adapted to MOFs with larger pores, such as MOF-808 by generating porous AM polymer coatings from bulkier DHN oligomers, highlighting the versatility of this method. Finally, we showed that by tuning the AM coating thickness on UiO-66, the hierarchically porous structures of these AM@UiO-66 composites engender excellent hexane isomer separation selectivity and storage capacity.

15.
J Am Chem Soc ; 145(49): 26890-26899, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037882

RESUMO

Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.

16.
J Am Chem Soc ; 145(37): 20492-20502, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37672758

RESUMO

Metal-organic frameworks (MOFs) that contain open metal sites have the potential for storing hydrogen (H2) at ambient temperatures. In particular, Cu(I)-based MOFs demonstrate very high isosteric heats of adsorption for hydrogen relative to other reported MOFs with open metal sites. However, most of these Cu(I)-based MOFs are not stable in ambient conditions since the Cu(I) species display sensitivity toward moisture and can rapidly oxidize in air. As a result, researchers have focused on the synthesis of new air-stable Cu(I)-based materials for H2 storage. Here, we have developed a de novo synthetic strategy to generate a robust Cu(I)-based MOF, denoted as NU-2100, using a mixture of Cu/Zn precursors in which zinc acts as a catalyst to transform an intermediate MOF into NU-2100 without getting incorporated into the final MOF structure. NU-2100 is air-stable and displays one of the initial highest isosteric heats of adsorption (32 kJ/mol) with good hydrogen storage capability under ambient conditions (10.4 g/L, 233 K/100 bar to 296 K/5 bar). We further elucidated the H2 storage performance of NU-2100 using a combination of spectroscopic analysis and computational modeling studies. Overall, this new synthetic route may enable the design of additional stable Cu(I)-MOFs for next-generation hydrogen storage adsorbents at ambient temperatures.

17.
J Am Chem Soc ; 145(20): 11195-11205, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186787

RESUMO

Carbon capture, storage, and utilization (CCSU) represents an opportunity to mitigate carbon emissions that drive global anthropogenic climate change. Promising materials for CCSU through gas adsorption have been developed by leveraging the porosity, stability, and tunability of extended crystalline coordination polymers called metal-organic frameworks (MOFs). While the development of these frameworks has yielded highly effective CO2 sorbents, an in-depth understanding of the properties of MOF pores that lead to the most efficient uptake during sorption would benefit the rational design of more efficient CCSU materials. Though previous investigations of gas-pore interactions often assumed that the internal pore environment was static, discovery of more dynamic behavior represents an opportunity for precise sorbent engineering. Herein, we report a multifaceted in situ analysis following the adsorption of CO2 in MOF-808 variants with different capping agents (formate, acetate, and trifluoroacetate: FA, AA, and TFA, respectively). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis paired with multivariate analysis tools and in situ powder X-ray diffraction revealed unexpected CO2 interactions at the node associated with dynamic behavior of node-capping modulators in the pores of MOF-808, which had previously been assumed to be static. MOF-808-TFA displays two binding modes, resulting in higher binding affinity for CO2. Computational analyses further support these dynamic observations. The beneficial role of these structural dynamics could play an essential role in building a deeper understanding of CO2 binding in MOFs.

18.
J Am Chem Soc ; 145(11): 6434-6441, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897997

RESUMO

Metal-organic frameworks (MOFs) are highly tunable materials with potential for use as porous media in non-thermal adsorption or membrane-based separations. However, many separations target molecules with sub-angstrom differences in size, requiring precise control over the pore size. Herein, we demonstrate that this precise control can be achieved by installing a three-dimensional linker in an MOF with one-dimensional channels. Specifically, we synthesized single crystals and bulk powder of NU-2002, an isostructural framework to MIL-53 with bicyclo[1.1.1]pentane-1,3-dicarboxylic acid as the organic linker component. Using variable-temperature X-ray diffraction studies, we show that increasing linker dimensionality limits structural breathing relative to MIL-53. Furthermore, single-component adsorption isotherms demonstrate the efficacy of this material for separating hexane isomers based on the different sizes and shapes of these isomers.

19.
J Am Chem Soc ; 145(13): 7435-7445, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36919617

RESUMO

Organophosphorus nerve agents are among the most toxic chemicals known and remain threats to humans due to their continued use despite international bans. Metal-organic frameworks (MOFs) have emerged as a class of heterogeneous catalysts with tunable structures that are capable of rapidly detoxifying these chemicals via hydrolysis at Lewis acidic active sites on the metal nodes. To date, the majority of studies in this field have focused on zirconium-based MOFs (Zr-MOFs) that contain hexanuclear Zr(IV) clusters, despite the large toolbox of Lewis acidic transition metal ions that are available to construct MOFs with similar catalytic properties. In particular, very few reports have disclosed the use of a Ti-based MOF (Ti-MOF) as a catalyst for this transformation even though Ti(IV) is a stronger Lewis acid than Zr(IV). In this work, we explored five Ti-MOFs (Ti-MFU-4l, NU-1012-NDC, MIL-125, Ti-MIL-101, MIL-177(LT), and MIL-177(HT)) that each contains Ti(IV) ions in unique coordination environments, including monometallic, bimetallic, octanuclear, triangular clusters, and extended chains, as catalysts to explore how both different node structures and different linkers (e.g., azolate and carboxylate) influence the binding and subsequent hydrolysis of an organophosphorus nerve agent simulant at Ti(IV)-based active sites in basic aqueous solutions. Experimental and theoretical studies confirm that Ti-MFU-4l, which contains monometallic Ti(IV)-OH species, exhibits the best catalytic performance among this series with a half-life of roughly 2 min. This places Ti-MFU-4l as one of the best nerve agent hydrolysis catalysts of any MOF reported to date.

20.
J Am Chem Soc ; 145(4): 2679-2689, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652593

RESUMO

Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA