Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immun Ageing ; 19(1): 12, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248063

RESUMO

BACKGROUND: COVID-19 patients may experience "cytokine storm" when human immune system produces excessive cytokines/chemokines. However, it remains unclear whether early responses of inflammatory cytokines would lead to high or low titers of anti-SARS-CoV-2 antibodies. METHODS: This retrospective study enrolled a cohort of 272 hospitalized patients with laboratory-confirmed SARS-CoV-2. Laboratory assessments of serum cytokines (IL-2R, IL-6, IL-8, IL-10, TNF-α), anti-SARS-CoV-2 IgG/IgM antibodies, and peripheral blood biomarkers were conducted during hospitalization. RESULTS: At hospital admission, 36.4% patients were severely ill, 51.5% patients were ≥ 65 years, and 60.3% patients had comorbidities. Higher levels of IL-2R and IL-6 were observed in older patients (≥65 years). Significant differences of IL-2R (week 2 to week ≥5 from symptom onset), IL-6 (week 1 to week ≥5), IL-8 (week 2 to week ≥5), and IL-10 (week 1 to week 3) were observed between moderately-ill and severely ill patients. Anti-SARS-CoV-2 IgG titers were significantly higher in severely ill patients than in moderately ill patients, but such difference was not observed for IgM. High titers of early-stage IL-6, IL-8, and TNF-α (≤2 weeks after symptom onset) were positively correlated with high titers of late-stage IgG (≥5 weeks after symptom onset). Deaths were mostly observed in severely ill older patients (45.9%). Survival analyses revealed risk factors of patient age, baseline COVID-19 severity, and baseline IL-6 that affected survival time, especially in severely ill older patients. CONCLUSION: Early responses of elevated cytokines such as IL-6 reflect the active immune responses, leading to high titers of IgG antibodies against COVID-19.

2.
Biologicals ; 80: 43-52, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36175304

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in Wuhan, China, is the causative agent of the coronavirus disease 2019 (COVID-19). Since its first notification in São Paulo state (SP) on 26th February 2020, more than 22,300,000 cases and 619,000 deaths were reported in Brazil. In early pandemic, SARS-CoV-2 spread locally, however, over time, this virus was disseminated to other regions of the country. Herein, we performed genomic sequencing and phylogenetic analysis of SARS-CoV-2 using 20 clinical samples of COVID-19 confirmed cases from 9 cities of Minas Gerais state (MG), in order to evaluate the molecular properties of circulating viral strains in this locality from March to May 2020. Our analyses demonstrated the circulation of B.1 lineage isolates in the investigated locations and nucleotide substitutions were observed into the genomic regions related to important viral structures. Additionally, sequences generated in this study clustered with isolates from SP, suggesting a dissemination route between these two states. Alternatively, monophyletic groups of sequences from MG and other states or country were observed, indicating independent events of virus introduction. These results reinforce the need of genomic surveillance for understand the ongoing spread of emerging viral pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Filogenia , Brasil/epidemiologia , Genoma Viral/genética
3.
Clin Infect Dis ; 73(7): e2436-e2443, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32766829

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) emerged in the Americas in 2013 and has caused approximately 2.1 million cases and >600 deaths. A retrospective investigation was undertaken to describe clinical, epidemiological, and viral genomic features associated with deaths caused by CHIKV in Ceará state, northeast Brazil. METHODS: Sera, cerebrospinal fluid (CSF), and tissue samples from 100 fatal cases with suspected arbovirus infection were tested for CHIKV, dengue virus (DENV), and Zika virus (ZIKV). Clinical, epidemiological, and death reports were obtained for patients with confirmed CHIKV infection. Logistic regression analysis was undertaken to identify independent factors associated with risk of death during CHIKV infection. Phylogenetic analysis was conducted using whole genomes from a subset of cases. RESULTS: Sixty-eight fatal cases had CHIKV infection confirmed by reverse-transcription quantitative polymerase chain reaction (52.9%), viral antigen (41.1%), and/or specific immunoglobulin M (63.2%). Co-detection of CHIKV with DENV was found in 22% of fatal cases, ZIKV in 2.9%, and DENV and ZIKV in 1.5%. A total of 39 CHIKV deaths presented with neurological signs and symptoms, and CHIKV-RNA was found in the CSF of 92.3% of these patients. Fatal outcomes were associated with irreversible multiple organ dysfunction syndrome. Patients with diabetes appear to die at a higher frequency during the subacute phase. Genetic analysis showed circulation of 2 CHIKV East-Central-South African (ECSA) lineages in Ceará and revealed no unique virus genomic mutation associated with fatal outcome. CONCLUSIONS: The investigation of the largest cross-sectional cohort of CHIKV deaths to date reveals that CHIKV-ECSA strains can cause death in individuals from both risk and nonrisk groups, including young adults.


Assuntos
Febre de Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Estudos Transversais , Humanos , Filogenia , Estudos Retrospectivos , Adulto Jovem , Zika virus/genética , Infecção por Zika virus/epidemiologia
4.
Emerg Infect Dis ; 27(3): 970-972, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33496249

RESUMO

In December 2020, research surveillance detected the B.1.1.7 lineage of severe acute respiratory syndrome coronavirus 2 in São Paulo, Brazil. Rapid genomic sequencing and phylogenetic analysis revealed 2 distinct introductions of the lineage. One patient reported no international travel. There may be more infections with this lineage in Brazil than reported.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2/isolamento & purificação , Viagem , Adulto , Brasil , COVID-19/epidemiologia , COVID-19/virologia , Feminino , Genoma Viral , Humanos , Masculino , Adulto Jovem
6.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944175

RESUMO

HIV-1 non-B infections have been increasing in Europe for several years. In Germany, subtype A belongs to the most abundant non-B subtypes showing an increasing prevalence of 8.3% among new infections in 2016. Here we trace the origin and examine the current spread of the German HIV-1 subtype A epidemic. Bayesian coalescence and birth-death analyses were performed with 180 German HIV-1 pol sequences and 528 related and publicly available sequences to reconstruct the population dynamics and fluctuations for each of the transmission groups. Our reconstructions indicate two distinct sources of the German subtype A epidemic, with an Eastern European and an Eastern African lineage both cocirculating in the country. A total of 13 German-origin clusters were identified; among these, 6 clusters showed recent activity. Introductions leading to further countrywide spread originated predominantly from Eastern Africa when introduced before 2005. Since 2005, however, spreading introductions have occurred exclusively within the Eastern European clade. Moreover, we observed changes in the main route of subtype A transmission. The beginning of the German epidemic (1985 to 1995) was dominated by heterosexual transmission of the Eastern African lineage. Since 2005, transmissions among German men who have sex with men (MSM) have been increasing and have been associated with the Eastern European lineage. Infections among people who inject drugs dominated between 1998 and 2005. Our findings on HIV-1 subtype A infections provide new insights into the spread of this virus and extend the understanding of the HIV epidemic in Germany.IMPORTANCE HIV-1 subtype A is the second most prevalent subtype worldwide, with a high prevalence in Eastern Africa and Eastern Europe. However, an increase of non-B infections, including subtype A infections, has been observed in Germany and other European countries. There has simultaneously been an increased flow of refugees into Europe and especially into Germany, raising the question of whether the surge in non-B infections resulted from this increased immigration or whether German transmission chains are mainly involved. This study is the first comprehensive subtype A study from a western European country analyzing in detail its phylogenetic origin, the impact of various transmission routes, and its current spread. The results and conclusions presented provide new and substantial insights for virologists, epidemiologists, and the general public health sector. In this regard, they should be useful to those authorities responsible for developing public health intervention strategies to combat the further spread of HIV/AIDS.


Assuntos
Infecções por HIV/epidemiologia , Infecções por HIV/genética , HIV-1/genética , Adulto , África Oriental/epidemiologia , Teorema de Bayes , Epidemias , Europa (Continente)/epidemiologia , Feminino , Alemanha/epidemiologia , Soropositividade para HIV , Heterossexualidade , Homossexualidade Masculina , Humanos , Masculino , Filogenia , Minorias Sexuais e de Gênero
7.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597773

RESUMO

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.


Assuntos
Surtos de Doenças , Genoma Viral , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/genética , Aedes/virologia , Alouatta/virologia , Animais , Brasil/epidemiologia , Callithrix/virologia , Cebus/virologia , Feminino , Variação Genética , Humanos , Incidência , Leontopithecus/virologia , Masculino , Mosquitos Vetores/virologia , Filogenia , Filogeografia , Sequenciamento Completo do Genoma , Febre Amarela/virologia , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade
8.
Mol Biol Evol ; 34(10): 2563-2571, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28651357

RESUMO

Rabies is an important zoonotic disease distributed worldwide. A key question in rabies epidemiology is the identification of factors that impact virus dispersion. Here we apply new analytical methods, based on phylogeographic reconstructions of viral lineage movement, to undertake a comparative evolutionary-epidemiological study of the spatial dynamics of rabies virus (RABV) epidemics in different hosts and habitats. We compiled RABV data sets from skunk, raccoon, bat and domestic dog populations in order to investigate the viral diffusivity of different RABV epidemics, and to detect and compare the environmental factors that impact the velocity of viral spread in continuous spatial landscapes. We build on a recently developed statistical framework that uses spatially- and temporally-referenced phylogenies. We estimate several spatial statistics of virus spread, which reveal a higher diffusivity of RABV in domestic dogs compared with RABV in other mammals. This finding is explained by subsequent analyses of environmental heterogeneity, which indicate that factors relating to human geography play a significant role in RABV dispersion in domestic dogs. More generally, our results suggest that human-related factors are important worldwide in explaining RABV dispersion in terrestrial host species. Our study shows that phylogenetically informed viral movements can be used to elucidate the factors that impact virus dispersal, opening new opportunities for a better understanding of the impact of host species and environmental conditions on the spatial dynamics of rapidly evolving populations.


Assuntos
Filogeografia/métodos , Raiva/epidemiologia , Raiva/genética , Animais , Evolução Biológica , Cães , Epidemias , Genes Virais , Humanos , Filogenia , Vírus da Raiva/patogenicidade , Zoonoses/genética
9.
Retrovirology ; 12: 18, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25808207

RESUMO

BACKGROUND: The HIV pandemic is characterized by extensive genetic variability, which has challenged the development of HIV drugs and vaccines. Although HIV genomes have been classified into different types, groups, subtypes and recombinants, a comprehensive study that maps HIV genome-wide diversity at the population level is still lacking to date. This study aims to characterize HIV genomic diversity in large-scale sequence populations, and to identify driving factors that shape HIV genome diversity. RESULTS: A total of 2996 full-length genomic sequences from 1705 patients infected with 16 major HIV groups, subtypes and circulating recombinant forms (CRFs) were analyzed along with structural, immunological and peptide inhibitor information. Average nucleotide diversity of HIV genomes was almost 50% between HIV-1 and HIV-2 types, 37.5% between HIV-1 groups, 14.7% between HIV-1 subtypes, 8.2% within individual HIV-1 subtypes and less than 1% within single patients. Along the HIV genome, diversity patterns and compositions of nucleotides and amino acids were highly similar across different groups, subtypes and CRFs. Current HIV-derived peptide inhibitors were predominantly derived from conserved, solvent accessible and intrinsically ordered structures in the HIV-1 subtype B genome. We identified these conserved regions in Capsid, Nucleocapsid, Protease, Integrase, Reverse transcriptase, Vpr and the GP41 N terminus as potential drug targets. In the analysis of factors that impact HIV-1 genomic diversity, we focused on protein multimerization, immunological constraints and HIV-human protein interactions. We found that amino acid diversity in monomeric proteins was higher than in multimeric proteins, and diversified positions were preferably located within human CD4 T cell and antibody epitopes. Moreover, intrinsic disorder regions in HIV-1 proteins coincided with high levels of amino acid diversity, facilitating a large number of interactions between HIV-1 and human proteins. CONCLUSIONS: This first large-scale analysis provided a detailed mapping of HIV genomic diversity and highlighted drug-target regions conserved across different groups, subtypes and CRFs. Our findings suggest that, in addition to the impact of protein multimerization and immune selective pressure on HIV-1 diversity, HIV-human protein interactions are facilitated by high variability within intrinsically disordered structures.


Assuntos
Variação Genética , Infecções por HIV/virologia , HIV-1/genética , Genoma Viral , Humanos , Análise de Sequência de DNA
10.
BMC Med ; 13: 102, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25976325

RESUMO

BACKGROUND: In December 2013, an outbreak of Chikungunya virus (CHIKV) caused by the Asian genotype was notified in the Caribbean. The outbreak has since spread to 38 regions in the Americas. By September 2014, the first autochthonous CHIKV infections were confirmed in Oiapoque, North Brazil, and in Feira de Santana, Northeast Brazil. METHODS: We compiled epidemiological and clinical data on suspected CHIKV cases in Brazil and polymerase-chain-reaction-based diagnostic was conducted on 68 serum samples from patients with symptom onset between April and September 2014. Two imported and four autochthonous cases were selected for virus propagation, RNA isolation, full-length genome sequencing, and phylogenetic analysis. We then followed CDC/PAHO guidelines to estimate the risk of establishment of CHIKV in Brazilian municipalities. RESULTS: We detected 41 CHIKV importations and 27 autochthonous cases in Brazil. Epidemiological and phylogenetic analyses indicated local transmission of the Asian CHIKV genotype in Oiapoque. Unexpectedly, we also discovered that the ECSA genotype is circulating in Feira de Santana. The presumed index case of the ECSA genotype was an individual who had recently returned from Angola and developed symptoms in Feira de Santana. We estimate that, if CHIKV becomes established in Brazil, transmission could occur in 94% of municipalities in the country and provide maps of the risk of importation of each strain of CHIKV in Brazil. CONCLUSIONS: The etiological strains associated with the early-phase CHIKV outbreaks in Brazil belong to the Asian and ECSA genotypes. Continued surveillance and vector mitigation strategies are needed to reduce the future public health impact of CHIKV in the Americas.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Adolescente , Adulto , Idoso , Brasil/epidemiologia , Criança , Pré-Escolar , Surtos de Doenças , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Filogenia , Saúde Pública , Risco , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-38747849

RESUMO

This study aimed to provide further insight into the evolutionary dynamics of SARS-CoV-2 by analyzing the case of a 40-year-old man who had previously undergone autologous hematopoietic stem cell transplantation due to a diffuse large B-cell lymphoma. He developed a persistent SARS-CoV-2 infection lasting at least 218 days and did not manifest a humoral immune response to the virus during this follow-up period. Whole-genome sequencing and viral cultures confirmed a persistent infection with a replication-positive virus that had undergone genetic variation for at least 196 days after symptom onset.


Assuntos
COVID-19 , Hospedeiro Imunocomprometido , SARS-CoV-2 , Eliminação de Partículas Virais , Humanos , Adulto , Masculino , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Linfoma Difuso de Grandes Células B/virologia , Linfoma Difuso de Grandes Células B/imunologia , Transplante de Células-Tronco Hematopoéticas , Sequenciamento Completo do Genoma
12.
Infect Genet Evol ; 109: 105407, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764633

RESUMO

The existence of sylvatic transmission of dengue virus in communities of neotropical bats remains uncertain. In this work we present a near-complete genome of dengue virus serotype 4 obtained from the brain sample of a bat from Platyrrhinus helleri specie collected in the Brazilian Amazon region. The presence of the virus in the brain sample may indicate a possible tropism for the central nervous system in bats, which may justify negative results in previous studies that focused on analysis of other tissues, such as liver and spleen. Besides the duration of dengue virus circulation in the Americas (circa 40 years) may be too short for an implementation of a sylvatic dengue virus cycle. Our findings suggest that continued monitoring is needed to confirm with the neotropical bats could potentially act as a natural reservoir of dengue in the region.


Assuntos
Quirópteros , Vírus da Dengue , Dengue , Animais , Vírus da Dengue/genética , Brasil/epidemiologia , Sorogrupo , Encéfalo , Dengue/epidemiologia
13.
Braz J Microbiol ; 54(3): 1411-1419, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178262

RESUMO

The genetic diversity of the dengue virus is characterized by four circulating serotypes, several genotypes, and an increasing number of existing lineages that may have differences in the potential to cause epidemics and disease severity. Accurate identification of the genetic variability of the virus is essential to identify lineages responsible for an epidemic and understanding the processes of virus spread and virulence. Here, we characterize, using portable nanopore genomic sequencing, different lineages of dengue virus 2 (DENV-2) detected in 22 serum samples from patients with and without dengue warning signs attended at Hospital de Base of São José do Rio Preto (SJRP) in 2019, during a DENV-2 outbreak. Demographic, epidemiological, and clinical data were also analyzed. The phylogenetic reconstruction and the clinical data showed that two lineages belonging to the American/Asian genotype of DENV-2-BR3 and BR4 (BR4L1 and BR4L2)-were co-circulating in SJRP. Although preliminary, these results indicate no specific association between clinical form and phylogenetic clustering at the virus consensus sequence level. Studies with larger sample sizes and which explore single nucleotide variants are needed. Therefore, we showed that portable nanopore genome sequencing could generate quick and reliable sequences for genomic surveillance to monitor viral diversity and its association with disease severity as an epidemic unfolds.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Filogenia , Sequência de Bases , Surtos de Doenças , Sorogrupo , Genótipo , Variação Genética
14.
PLoS Negl Trop Dis ; 17(1): e0011037, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608155

RESUMO

BACKGROUND: Chikungunya-fever (CHIKF) remains a public health major issue. It is clinically divided into three phases: acute, post-acute and chronic. Chronic cases correspond to 25-40% individuals and, though most of them are characterized by long-lasting arthralgia alone, many of them exhibit persistent or recurrent inflammatory signs that define post-Chikungunya chronic inflammatory joint disease (pCHIKV-CIJD). We aimed to identify early clinical markers of evolution to pCHIKV-CIJD during acute and post-acute phases. METHODOLOGY/PRINCIPAL FINDINGS: We studied a prospective cohort of CHIKF-confirmed volunteers with longitudinal clinical data collection from symptoms onset up to 90 days, including a 21-day visit (D21). Of 169 patients with CHIKF, 86 (50.9%) completed the follow-up, from whom 39 met clinical criteria for pCHIKV-CIJD (45.3%). The relative risk of chronification was higher in women compared to men (RR = 1.52; 95% CI = 1.15-1.99; FDR = 0.03). None of the symptoms or signs presented at D0 behaved as an early predictor of pCHIKV-CIJD, while being symptomatic at D21 was a risk factor for chronification (RR = 1.31; 95% CI = 1.09-1.55; FDR = 0.03). Significance was also observed for joint pain (RR = 1.35; 95% CI = 1.12-1.61; FDR = 0.02), reported edema (RR = 3.61; 95% CI = 1.44-9.06; FDR = 0.03), reported hand and/or feet small joints edema (RR = 4.22; 95% CI = 1.51-11.78; FDR = 0.02), and peri-articular edema observed during physical examination (RR = 2.89; 95% CI = 1.58-5.28; FDR = 0.002). Furthermore, patients with no findings in physical examination at D21 were at lower risk of chronic evolution (RR = 0.41, 95% CI = 0.24-0.70, FDR = 0.01). Twenty-nine pCHIKV-CIJD patients had abnormal articular ultrasonography (90.6% of the examined). The most common findings were synovitis (65.5%) and joint effusion (58.6%). CONCLUSION: This cohort has provided important insights into the prognostic evaluation of CHIKF. Symptomatic sub-acute disease is a relevant predictor of evolution to chronic arthritis with synovitis, drawing attention to joint pain, edema, multiple articular involvement including small hand and feet joints as risk factors for chronification beyond three months, especially in women. Future studies are needed to accomplish the identification of accurate and early biomarkers of poor clinical prognosis, which would allow better understanding of the disease's evolution and improve patients' management, modifying CHIKF burden on global public health.


Assuntos
Artrite , Febre de Chikungunya , Sinovite , Masculino , Humanos , Feminino , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Estudos Prospectivos , Brasil/epidemiologia , Artralgia/epidemiologia , Artralgia/etiologia , Biomarcadores , Doença Crônica
15.
PLoS Negl Trop Dis ; 17(9): e0011536, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37769008

RESUMO

Since 2014, Brazil has experienced an unprecedented epidemic caused by chikungunya virus (CHIKV), with several waves of East-Central-South-African (ECSA) lineage transmission reported across the country. In 2018, Rio de Janeiro state, the third most populous state in Brazil, reported 41% of all chikungunya cases in the country. Here we use evolutionary and epidemiological analysis to estimate the timescale of CHIKV-ECSA-American lineage and its epidemiological patterns in Rio de Janeiro. We show that the CHIKV-ECSA outbreak in Rio de Janeiro derived from two distinct clades introduced from the Northeast region in mid-2015 (clade RJ1, n = 63/67 genomes from Rio de Janeiro) and mid-2017 (clade RJ2, n = 4/67). We detected evidence for positive selection in non-structural proteins linked with viral replication in the RJ1 clade (clade-defining: nsP4-A481D) and the RJ2 clade (nsP1-D531G). Finally, we estimate the CHIKV-ECSA's basic reproduction number (R0) to be between 1.2 to 1.6 and show that its instantaneous reproduction number (Rt) displays a strong seasonal pattern with peaks in transmission coinciding with periods of high Aedes aegypti transmission potential. Our results highlight the need for continued genomic and epidemiological surveillance of CHIKV in Brazil, particularly during periods of high ecological suitability, and show that selective pressures underline the emergence and evolution of the large urban CHIKV-ECSA outbreak in Rio de Janeiro.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/genética , Brasil/epidemiologia , Filogenia , Genômica , Surtos de Doenças
16.
Microorganisms ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38138032

RESUMO

Toxoplasmosis is an important zoonotic disease caused by the parasite Toxoplasma gondii and is especially fatal for neotropical primates. In Brazil, the Ministry of Health is responsible for national epizootic surveillance, but some diseases are still neglected. Here, we present an integrated investigation of an outbreak that occurred during the first year of the COVID-19 pandemic among eleven neotropical primates housed at a primatology center in Brazil. After presenting non-specific clinical signs, all animals died within four days. A wide range of pathogens were evaluated, and we successfully identified T. gondii as the causative agent within four days after necropsies. The liver was the most affected organ, presenting hemorrhage and hepatocellular necrosis. Tachyzoites and bradyzoite cysts were observed in histological examinations and immunohistochemistry in different organs; in addition, parasitic DNA was detected through PCR in blood samples from all specimens evaluated. A high prevalence of Escherichia coli was also observed, indicating sepsis. This case highlights some of the obstacles faced by the current Brazilian surveillance system. A diagnosis was obtained through the integrated action of researchers since investigation for toxoplasmosis is currently absent in national guidelines. An interdisciplinary investigation could be a possible model for future epizootic investigations in animals.

17.
Emerg Infect Dis ; 18(11): 1858-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23092706

RESUMO

Dengue virus serotype 4 (DENV-4) reemerged in Roraima State, Brazil, 28 years after it was last detected in the country in 1982. To study the origin and evolution of this reemergence, full-length sequences were obtained for 16 DENV-4 isolates from northern (Roraima, Amazonas, Pará States) and northeastern (Bahia State) Brazil during the 2010 and 2011 dengue virus seasons and for an isolate from the 1982 epidemic in Roraima. Spatiotemporal dynamics of DENV-4 introductions in Brazil were applied to envelope genes and full genomes by using Bayesian phylogeographic analyses. An introduction of genotype I into Brazil from Southeast Asia was confirmed, and full genome phylogeographic analyses revealed multiple introductions of DENV-4 genotype II in Brazil, providing evidence for >3 introductions of this genotype within the last decade: 2 from Venezuela to Roraima and 1 from Colombia to Amazonas. The phylogeographic analysis of full genome data has demonstrated the origins of DENV-4 throughout Brazil.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Animais , Brasil/epidemiologia , Vírus da Dengue/classificação , Genoma Viral , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia , Sorotipagem , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
18.
PLoS Negl Trop Dis ; 16(5): e0010255, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584153

RESUMO

BACKGROUND: The transmission patterns and genetic diversity of dengue virus (DENV) circulating in Africa remain poorly understood. Circulation of the DENV serotype 1 (DENV1) in Angola was detected in 2013, while DENV serotype 2 (DENV2) was detected in 2018. Here, we report results from molecular and genomic investigations conducted at the Ministry of Health national reference laboratory (INIS) in Angola on suspected dengue cases detected between January 2017 and February 2019. METHODS: A total of 401 serum samples from dengue suspected cases were collected in 13 of the 18 provinces in Angola. Of those, 351 samples had complete data for demographic and epidemiological analysis, including age, gender, province, type of residence, clinical symptoms, as well as dates of onset of symptoms and sample collection. RNA was extracted from residual samples and tested for DENV-RNA using two distinct real time RT-PCR protocols. On-site whole genome nanopore sequencing was performed on RT-PCR+ samples. Bayesian coalescent models were used to estimate date and origin of outbreak emergence, as well as population growth rates. RESULTS: Molecular screening showed that 66 out of 351 (19%) suspected cases were DENV-RNA positive across 5 provinces in Angola. DENV RT-PCR+ cases were detected more frequently in urban sites compared to rural sites. Of the DENV RT-PCR+ cases most were collected within 6 days of symptom onset. 93% of infections were confirmed by serotype-specific RT-PCR as DENV2 and 1 case (1.4%) was confirmed as DENV1. Six CHIKV RT-PCR+ cases were also detected during the study period, including 1 co-infection of CHIKV with DENV1. Most cases (87%) were detected in Luanda during the rainy season between April and October. Symptoms associated with severe dengue were observed in 11 patients, including 2 with a fatal outcome. On-site nanopore genome sequencing followed by genetic analysis revealed an introduction of DENV2 Cosmopolitan genotype (also known as DENV2-II genotype) possibly from India in or around October 2015, at least 1 year before its detection in the country. Coalescent models suggest relatively moderately rapid epidemic growth rates and doubling times, and a moderate expansion of DENV2 in Angola during the studied period. CONCLUSION: This study describes genomic, epidemiological and demographic characteristic of predominately urban transmission of DENV2 in Angola. We also find co-circulation of DENV2 with DENV1 and CHIKV and report several RT-PCR confirmed severe dengue cases in the country. Increasing dengue awareness in healthcare professional, expanding the monitorization of arboviral epidemics across the country, identifying most common mosquito breeding sites in urban settings, implementing innovative vector control interventions and dengue vaccination campaigns could help to reduce vector presence and DENV transmission in Angola.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Angola/epidemiologia , Animais , Teorema de Bayes , Vírus da Dengue/genética , Surtos de Doenças , Genômica , Humanos , Mosquitos Vetores , Filogenia , RNA , Sorogrupo , Dengue Grave/epidemiologia
19.
Infect Genet Evol ; 95: 105041, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411742

RESUMO

Paramyxoviruses have a broad host range and geographic distribution, including human pathogens transmitted by bats, such as Nipah and Hendra viruses. In this study, we combined high-throughput sequencing and molecular approaches to investigate the presence of paramyxoviruses in neotropical bats (Microchiroptera suborder) in Brazil. We discovered and characterized three novel paramyxoviruses in the kidney tissues of apparently healthy common vampire bats (D. rotundus) and Seba's short-tailed bats (C. perspicillata), which we tentatively named Kanhgág virus (KANV), Boe virus (BOEV), and Guató virus (GUATV). In this study, we classified these viruses as putative species into the Macrojêvirus genus, a newly proposed genus of the Orthoparamyxovirinae subfamily. Using RT-PCR, we detected these viruses in 20.9% (9 out of 43) of bats tested, and viral RNA was detected exclusively in kidney tissues. Attempts to isolate infectious virus were successful for KANV and GUATV. Our results expand the viral diversity, host range, and geographical distribution of the paramyxoviruses.


Assuntos
Quirópteros , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/classificação , Animais , Brasil/epidemiologia , Especificidade de Hospedeiro , Paramyxoviridae/fisiologia , Filogenia , Prevalência , RNA Viral/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-33909850

RESUMO

Reinfection by the severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) has been reported in many countries, suggesting that the virus may continue to circulate among humans despite the possibility of local herd immunity due to massive previous infections. The emergence of variants of concern (VOC) that are more transmissible than the previous circulating ones has raised particular concerns on the vaccines effectiveness and reinfection rates. The P.1 lineage was first identified in December 2020 in Manaus city and is now globally spread. We report the first case of reinfection of SARS-CoV-2 caused by the P.1 variant outside of Manaus. The potential of these new variants to escape naturally and vaccine- induced immunity highlights the need for a global vigilance.


Assuntos
COVID-19 , Reinfecção , SARS-CoV-2 , Brasil/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Reinfecção/virologia , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA