RESUMO
The aim of our study was to evaluate whether the introduction of SDD in a structured protocol for VAP prevention was effective in reducing the occurrence of ventilator-associated pneumonia (VAP) in COVID-19 patients without changes in the microbiological pattern of antibiotic resistance. This observational pre-post study included adult patients requiring invasive mechanical ventilation (IMV) for severe respiratory failure related to SARS-CoV-2 admitted in three COVID-19 intensive care units (ICUs) in an Italian hospital from 22 February 2020 to 8 March 2022. Selective digestive decontamination (SDD) was introduced from the end of April 2021 in the structured protocol for VAP prevention. The SDD consisted of a tobramycin sulfate, colistin sulfate, and amphotericin B suspension applied in the patient's oropharynx and the stomach via a nasogastric tube. Three-hundred-and-forty-eight patients were included in the study. In the 86 patients (32.9%) who received SDD, the occurrence of VAP decreased by 7.7% (p = 0.192) compared to the patients who did not receive SDD. The onset time of VAP, the occurrence of multidrug-resistant microorganisms AP, the length of invasive mechanical ventilation, and hospital mortality were similar in the patients who received and who did not receive SDD. The multivariate analysis adjusted for confounders showed that the use of SDD reduces the occurrence of VAP (HR 0.536, CI 0.338-0.851; p = 0.017). Our pre-post observational study indicates that the use of SDD in a structured protocol for VAP prevention seems to reduce the occurrence of VAP without changes in the incidence of multidrug-resistant bacteria in COVID-19 patients.
RESUMO
Background: The time-course of the coronavirus disease 2019 (COVID-19) pandemic was characterized by subsequent waves identified by peaks of intensive care unit (ICU) admission rates. During these periods, progressive knowledge of the disease led to the development of specific therapeutic strategies. This retrospective study investigates whether this led to improvement in outcomes of COVID-19 patients admitted to ICU. Methods: Outcomes were evaluated in consecutive adult COVID-19 patients admitted to our ICU, divided into three waves based on the admission period: the first wave from February 25th, 2020, to July 6th, 2020; the second wave from September 20th, 2020, to February 13th, 2021; the third wave from February 14th, 2021 to April 30th, 2021. Differences were assessed comparing outcomes and by using different multivariable Cox models adjusted for variables related to outcome. Further sensitivity analysis was performed in patients undergoing invasive mechanical ventilation (IMV). Results: Overall, 428 patients were included in the analysis: 102, 169, and 157 patients in the first, second, and third wave. The ICU and in-hospital crude mortalities were lower by 7% and 10% in the third wave compared to the other two waves (P>0.05). A higher number of ICU- and hospital-free days at day 90 was found in the third wave when compared to the other two waves (P=0.001). Overall, 62.6% underwent invasive ventilation, with decreasing requirement during the waves (P=0.002). The adjusted Cox model showed no difference in the hazard ratio (HR) for mortality among the waves. In the propensity-matched analysis the hospital mortality rate was reduced by 11% in the third wave (P=0.044). Conclusions: With application of best practice as known by the time of the first three waves of the pandemic, our study failed to identify a significant improvement in mortality rate when comparing the different waves of the COVID-19 pandemic, notwithstanding, the sub-analyses showed a trend in mortality reduction in the third wave. Rather, our study identified a possible positive effect of dexamethasone on mortality rate reduction and the increased risk of death related to bacterial infections in the three waves.
RESUMO
COVID-19-associated invasive pulmonary aspergillosis (CAPA) is common and is associated with poor outcomes in critically ill patients. This prospective observational study aimed to explore the association between CAPA development and the incidence and prognosis of cytomegalovirus (CMV) reactivation in critically ill COVID-19 patients. We included all consecutive critically ill adult patients with confirmed COVID-19 infection who were admitted to three COVID-19 intensive care units (ICUs) in an Italian hospital from 25 February 2020 to 8 May 2022. A standardized procedure was employed for early detection of CAPA. Risk factors associated with CAPA and CMV reactivation and the association between CMV recurrence and mortality were estimated using adjusted Cox proportional hazard regression models. CAPA occurred in 96 patients (16.6%) of the 579 patients analyzed. Among the CAPA population, 40 (41.7%) patients developed CMV blood reactivation with a median time of 18 days (IQR 7-27). The CAPA+CMV group did not exhibit a significantly higher 90-day mortality rate (62.5% vs. 48.2%) than the CAPA alone group (p = 0.166). The CAPA+CMV group had a longer ICU stay, fewer ventilation-free days, and a higher rate of secondary bacterial infections than the control group of CAPA alone. In the CAPA population, prior immunosuppression was the only independent risk factor for CMV reactivation (HR 2.33, 95% C.I. 1.21-4.48, p = 0.011). In critically ill COVID-19 patients, CMV reactivation is common in those with a previous CAPA diagnosis. Basal immunosuppression before COVID-19 appeared to be the primary independent variable affecting CMV reactivation in patients with CAPA. Furthermore, the association of CAPA+CMV versus CAPA alone appears to impact ICU length of stay and secondary bacterial infections but not mortality.
Assuntos
Infecções Bacterianas , COVID-19 , Infecções por Citomegalovirus , Aspergilose Pulmonar Invasiva , Adulto , Humanos , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/epidemiologia , COVID-19/complicações , Estado Terminal , Estudos ProspectivosRESUMO
PURPOSE: Cytomegalovirus (CMV) reactivation in immunocompetent critically ill patients is common and relates to a worsening outcome. In this large observational study, we evaluated the incidence and the risk factors associated with CMV reactivation and its effects on mortality in a large cohort of patients affected by coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). METHODS: Consecutive patients with confirmed SARS-CoV-2 infection and acute respiratory distress syndrome admitted to three ICUs from February 2020 to July 2021 were included. The patients were screened at ICU admission and once or twice per week for quantitative CMV-DNAemia in the blood. The risk factors associated with CMV blood reactivation and its association with mortality were estimated by adjusted Cox proportional hazards regression models. RESULTS: CMV blood reactivation was observed in 88 patients (20.4%) of the 431 patients studied. Simplified Acute Physiology Score (SAPS) II score (HR 1031, 95% CI 1010-1053, p = 0.006), platelet count (HR 0.0996, 95% CI 0.993-0.999, p = 0.004), invasive mechanical ventilation (HR 2611, 95% CI 1223-5571, p = 0.013) and secondary bacterial infection (HR 5041; 95% CI 2852-8911, p < 0.0001) during ICU stay were related to CMV reactivation. Hospital mortality was higher in patients with (67.0%) than in patients without (24.5%) CMV reactivation but the adjusted analysis did not confirm this association (HR 1141, 95% CI 0.757-1721, p = 0.528). CONCLUSION: The severity of illness and the occurrence of secondary bacterial infections were associated with an increased risk of CMV blood reactivation, which, however, does not seem to influence the outcome of COVID-19 ICU patients independently.