Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neurobiol Dis ; 195: 106498, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583639

RESUMO

CHCHD10-related disease causes a spectrum of clinical presentations including mitochondrial myopathy, cardiomyopathy, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We generated a knock-in mouse model bearing the p.Ser59Leu (S59L) CHCHD10 variant. Chchd10S59L/+ mice have been shown to phenotypically replicate the disorders observed in patients: myopathy with mtDNA instability, cardiomyopathy and typical ALS features (protein aggregation, neuromuscular junction degeneration and spinal motor neuron loss). Here, we conducted a comprehensive behavioral, electrophysiological and neuropathological assessment of Chchd10S59L/+ mice. These animals show impaired learning and memory capacities with reduced long-term potentiation (LTP) measured at the Perforant Pathway-Dentate Gyrus (PP-DG) synapses. In the hippocampus of Chchd10S59L/+ mice, neuropathological studies show the involvement of protein aggregates, activation of the integrated stress response (ISR) and neuroinflammation in the degenerative process. These findings contribute to decipher mechanisms associated with CHCHD10 variants linking mitochondrial dysfunction and neuronal death. They also validate the Chchd10S59L/+ mice as a relevant model for FTD, which can be used for preclinical studies to test new therapeutic strategies for this devastating disease.


Assuntos
Modelos Animais de Doenças , Demência Frontotemporal , Proteínas Mitocondriais , Animais , Demência Frontotemporal/patologia , Demência Frontotemporal/genética , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Camundongos Transgênicos , Comportamento Animal/fisiologia , Masculino , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Hipocampo/patologia , Hipocampo/metabolismo
2.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33144711

RESUMO

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Proteínas de Membrana , Proteínas de Neoplasias , Plasticidade Neuronal/genética , Neurônios , Fatores de Risco
3.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012124

RESUMO

NX210c is a disease-modifying dodecapeptide derived from the subcommissural organ-spondin that is under preclinical and clinical development for the treatment of neurological disorders. Here, using whole-cell patch-clamp recordings, we demonstrate that NX210c increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and GluN2A-containing N-methyl-D-aspartate receptor (GluN2A-NMDAR)-mediated excitatory postsynaptic currents in the brain. Accordingly, using extracellular field excitatory postsynaptic potential recordings, an enhancement of synaptic transmission was shown in the presence of NX210c in two different neuronal circuits. Furthermore, the modulation of synaptic transmission and GluN2A-NMDAR-driven signaling by NX210c restored memory in mice chronically treated with the NMDAR antagonist phencyclidine. Overall, by promoting glutamatergic receptor-related neurotransmission and signaling, NX210c represents an innovative therapeutic opportunity for patients suffering from CNS disorders, injuries, and states with crippling synaptic dysfunctions.


Assuntos
Receptores de AMPA , Transmissão Sináptica , Animais , Sistema Nervoso Central/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Peptídeos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
5.
Neurobiol Learn Mem ; 135: 100-114, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27498008

RESUMO

Memory formation is associated with activity-dependent changes in synaptic plasticity. The mechanisms underlying these processes are complex and involve multiple components. Recent work has implicated the protein KIBRA in human memory, but its molecular functions in memory processes remain not fully understood. Here, we show that a selective overexpression of KIBRA in neurons increases hippocampal long-term potentiation (LTP) but prevents the induction of long-term depression (LTD), and impairs spatial long-term memory in adult mice. KIBRA overexpression increases the constitutive recycling of AMPA receptors containing GluA1 (GluA1-AMPARs), and favors their activity-dependent surface expression. It also results in dramatic dendritic rearrangements in pyramidal neurons both in vitro and in vivo. KIBRA knockdown in contrast, abolishes LTP, decreases GluA1-AMPARs recycling and reduces dendritic arborization. These results establish KIBRA as a novel bidirectional regulator of synaptic and structural plasticity in hippocampal neurons, and of long-term memory, highly relevant to cognitive processes and their pathologies.


Assuntos
Proteínas de Transporte/fisiologia , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Memória Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Transgênicos , Fosfoproteínas
6.
Science ; 384(6699): eadd6260, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38815015

RESUMO

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cálcio , Homeostase , Fármacos Neuroprotetores , Septinas , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos , Modelos Animais de Doenças , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Septinas/metabolismo , Proteínas tau/metabolismo
7.
Redox Biol ; 48: 102198, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34856436

RESUMO

The nucleoredoxin gene NXNL2 encodes for two products through alternative splicing, rod-derived cone viability factor-2 (RdCVF2) that mediates neuronal survival and the thioredoxin-related protein (RdCVF2L), an enzyme that regulates the phosphorylation of TAU. To investigate the link between NXNL2 and tauopathies, we studied the Nxnl2 knockout mouse (Nxnl2-/-). We established the expression pattern of the Nxnl2 gene in the brain using a Nxnl2 reporter mouse line, and characterized the behavior of the Nxnl2-/- mouse at 2 months of age. Additionally, long term potentiation and metabolomic from hippocampal specimens were collected at 2 months of age. We studied TAU oligomerization, phosphorylation and aggregation in Nxnl2-/- brain at 18 months of age. Finally, newborn Nxnl2-/- mice were treated with adeno-associated viral vectors encoding for RdCVF2, RdCVF2L or both and measured the effect of this therapy on long-term potential, glucose metabolism and late-onset tauopathy. Nxnl2-/- mice at 2 months of age showed severe behavioral deficiency in fear, pain sensitivity, coordination, learning and memory. The Nxnl2-/- also showed deficits in long-term potentiation, demonstrating that the Nxnl2 gene is involved in regulating brain functions. Dual delivery of RdCVF2 and RdCVF2L in newborn Nxnl2-/- mice fully correct long-term potentiation through their synergistic action. The expression pattern of the Nxnl2 gene in the brain shows a predominant expression in circumventricular organs, such as the area postrema. Glucose metabolism of the hippocampus of Nxnl2-/- mice at 2 months of age was reduced, and was not corrected by gene therapy. At 18-month-old Nxnl2-/- mice showed brain stigmas of tauopathy, such as oligomerization, phosphorylation and aggregation of TAU. This late-onset tauopathy can be prevented, albeit with modest efficacy, by recombinant AAVs administrated to newborn mice. The Nxnl2-/- mice have memory dysfunction at 2-months that resembles mild-cognitive impairment and at 18-months exhibit tauopathy, resembling to the progression of Alzheimer's disease. We propose the Nxnl2-/- mouse is a model to study multistage aged related neurodegenerative diseases. The NXNL2 metabolic and redox signaling is a new area of therapeutic research in neurodegenerative diseases.

8.
J Neurosci ; 29(41): 13079-89, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19828821

RESUMO

Chromatin remodeling through histone posttranslational modifications (PTMs) and DNA methylation has recently been implicated in cognitive functions, but the mechanisms involved in such epigenetic regulation remain poorly understood. Here, we show that protein phosphatase 1 (PP1) is a critical regulator of chromatin remodeling in the mammalian brain that controls histone PTMs and gene transcription associated with long-term memory. Our data show that PP1 is present at the chromatin in brain cells and interacts with enzymes of the epigenetic machinery including HDAC1 (histone deacetylase 1) and histone demethylase JMJD2A (jumonji domain-containing protein 2A). The selective inhibition of the nuclear pool of PP1 in forebrain neurons in transgenic mice is shown to induce several histone PTMs that include not only phosphorylation but also acetylation and methylation. These PTMs are residue-specific and occur at the promoter of genes important for memory formation like CREB (cAMP response element-binding protein) and NF-kappaB (nuclear factor-kappaB). These histone PTMs further co-occur with selective binding of RNA polymerase II and altered gene transcription, and are associated with improved long-term memory for objects and space. Together, these findings reveal a novel mechanism for the epigenetic control of gene transcription and long-term memory in the adult brain that depends on PP1.


Assuntos
Código das Histonas/fisiologia , Histonas/metabolismo , Memória/fisiologia , Proteína Fosfatase 1/fisiologia , Análise de Variância , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Imunoprecipitação da Cromatina/métodos , Aprendizagem por Discriminação/fisiologia , Doxiciclina/farmacologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/fisiologia , Histona Desacetilases/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios/ultraestrutura , Testes Neuropsicológicos , Oxirredutases N-Desmetilantes/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteína Fosfatase 1/genética , Transdução Genética/métodos
9.
Mol Cell Neurosci ; 41(4): 409-19, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19394428

RESUMO

Rac1 is a member of the Rho family of small GTPases that are important for structural aspects of the mature neuronal synapse including basal spine density and shape, activity-dependent spine enlargement, and AMPA receptor clustering in vitro. Here we demonstrate that selective elimination of Rac1 in excitatory neurons in the forebrain in vivo not only affects spine structure, but also impairs synaptic plasticity in the hippocampus with consequent defects in hippocampus-dependent spatial learning. Furthermore, Rac1 mutants display deficits in working/episodic-like memory in the delayed matching-to-place (DMP) task suggesting that Rac1 is a central regulator of rapid encoding of novel spatial information in vivo.


Assuntos
Hipocampo/citologia , Aprendizagem/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Comportamento Espacial/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Análise de Variância , Animais , Biofísica/métodos , Proteína 4 Homóloga a Disks-Large , Estimulação Elétrica/métodos , Proteínas de Fluorescência Verde/genética , Guanilato Quinases , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Neurônios/fisiologia , Neurônios/ultraestrutura , Técnicas de Patch-Clamp/métodos , Tempo de Reação/genética , beta-Galactosidase/metabolismo , Proteínas rac1 de Ligação ao GTP/deficiência
10.
J Neurosci ; 28(1): 154-62, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18171933

RESUMO

Protein kinases and phosphatases can alter the impact of excitotoxicity resulting from ischemia by concurrently modulating apoptotic/survival pathways. Here, we show that protein phosphatase 1 (PP1), known to constrain neuronal signaling and synaptic strength (Mansuy et al., 1998; Morishita et al., 2001), critically regulates neuroprotective pathways in the adult brain. When PP1 is inhibited pharmacologically or genetically, recovery from oxygen/glucose deprivation (OGD) in vitro, or ischemia in vivo is impaired. Furthermore, in vitro, inducing LTP shortly before OGD similarly impairs recovery, an effect that correlates with strong PP1 inhibition. Conversely, inducing LTD before OGD elicits full recovery by preserving PP1 activity, an effect that is abolished by PP1 inhibition. The mechanisms of action of PP1 appear to be coupled with several components of apoptotic pathways, in particular ERK1/2 (extracellular signal-regulated kinase 1/2) whose activation is increased by PP1 inhibition both in vitro and in vivo. Together, these results reveal that the mechanisms of recovery in the adult brain critically involve PP1, and highlight a novel physiological function for long-term potentiation and long-term depression in the control of brain damage and repair.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Plasticidade Neuronal/fisiologia , Proteína Fosfatase 1/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Animais Geneticamente Modificados , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Doxiciclina/administração & dosagem , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glucose/deficiência , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Hipocampo/efeitos da radiação , Hipóxia/complicações , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/fisiologia , Depressão Sináptica de Longo Prazo/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/genética , Piranos/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos da radiação , Compostos de Espiro/farmacologia
11.
J Neurosci ; 27(29): 7648-53, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17634359

RESUMO

Amyloid beta (Abeta) oligomers are derived from proteolytic cleavage of amyloid precursor protein (APP) and can impair memory and hippocampal long-term potentiation (LTP) in vivo and in vitro. They are recognized as the primary neurotoxic agents in Alzheimer's disease. The mechanisms underlying such toxicity on synaptic functions are complex and not fully understood. Here, we provide the first evidence that these mechanisms involve protein phosphatase 1 (PP1). Using a novel transgenic mouse model expressing human APP with the Swedish and Arctic mutations that render Abeta more prone to form oligomers (arcAbeta mice), we show that the LTP impairment induced by Abeta oligomers can be fully reversed by PP1 inhibition in vitro. We further demonstrate that the genetic inhibition of endogenous PP1 in vivo confers resistance to Abeta oligomer-mediated toxicity and preserves LTP. Overall, these results reveal that PP1 is a key player in the mechanisms of AD pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Fatores Etários , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Análise de Variância , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Humanos , Técnicas In Vitro , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/efeitos da radiação , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Presenilina-1/genética , Proteína Fosfatase 1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
12.
Mol Neurodegener ; 13(1): 50, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257685

RESUMO

BACKGROUND: Neuronal Ca2+ dyshomeostasis and hyperactivity play a central role in Alzheimer's disease pathology and progression. Amyloid-beta together with non-genetic risk-factors of Alzheimer's disease contributes to increased Ca2+ influx and aberrant neuronal activity, which accelerates neurodegeneration in a feed-forward fashion. As such, identifying new targets and drugs to modulate excessive Ca2+ signalling and neuronal hyperactivity, without overly suppressing them, has promising therapeutic potential. METHODS: Here we show, using biochemical, electrophysiological, imaging, and behavioural tools, that pharmacological modulation of Rap1 signalling by inhibiting its interaction with Pde6δ normalises disease associated Ca2+ aberrations and neuronal activity, conferring neuroprotection in models of Alzheimer's disease. RESULTS: The newly identified inhibitors of the Rap1-Pde6δ interaction counteract AD phenotypes, by reconfiguring Rap1 signalling underlying synaptic efficacy, Ca2+ influx, and neuronal repolarisation, without adverse effects in-cellulo or in-vivo. Thus, modulation of Rap1 by Pde6δ accommodates key mechanisms underlying neuronal activity, and therefore represents a promising new drug target for early or late intervention in neurodegenerative disorders. CONCLUSION: Targeting the Pde6δ-Rap1 interaction has promising therapeutic potential for disorders characterised by neuronal hyperactivity, such as Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Complexo Shelterina , Transdução de Sinais/fisiologia
13.
PLoS One ; 7(3): e34047, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479519

RESUMO

An imbalance between pro-survival and pro-death pathways in brain cells can lead to neuronal cell death and neurodegeneration. While such imbalance is known to be associated with alterations in glutamatergic and Ca(2+) signaling, the underlying mechanisms remain undefined. We identified the protein Ser/Thr phosphatase protein phosphatase-1 (PP1), an enzyme associated with glutamate receptors, as a key trigger of survival pathways that can prevent neuronal death and neurodegeneration in the adult hippocampus. We show that PP1α overexpression in hippocampal neurons limits NMDA receptor overactivation and Ca(2+) overload during an excitotoxic event, while PP1 inhibition favors Ca(2+) overload and cell death. The protective effect of PP1 is associated with a selective dephosphorylation on a residue phosphorylated by CaMKIIα on the NMDA receptor subunit NR2B, which promotes pro-survival pathways and associated transcriptional programs. These results reveal a novel contributor to the mechanisms of neuroprotection and underscore the importance of PP1-dependent dephosphorylation in these mechanisms. They provide a new target for the development of potential therapeutic treatment of neurodegeneration.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteína Fosfatase 1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glucose/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Oxigênio/metabolismo , Fosforilação , Transdução de Sinais , Transcrição Gênica
14.
EMBO Mol Med ; 2(8): 306-14, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20665634

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disorder, goes along with extracellular amyloid-beta (Abeta) deposits. The cognitive decline observed during AD progression correlates with damaged spines, dendrites and synapses in hippocampus and cortex. Numerous studies have shown that Abeta oligomers, both synthetic and derived from cultures and AD brains, potently impair synaptic structure and functions. The cellular prion protein (PrP(C)) was proposed to mediate this effect. We report that ablation or overexpression of PrP(C) had no effect on the impairment of hippocampal synaptic plasticity in a transgenic model of AD. These findings challenge the role of PrP(C) as a mediator of Abeta toxicity.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Hipocampo/patologia , Príons/metabolismo , Sinapses/patologia , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Príons/genética
15.
Learn Mem ; 13(3): 329-34, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16741284

RESUMO

It has been shown that long-term potentiation (LTP) develops in the connection between the mediodorsal thalamus (MD) and the medial prefrontal cortex (mPFC) and between the hippocampus (HPC) and the mPFC following fear extinction, and correlates with extinction retention. However, recent lesion studies have shown that combined lesions of the MD and mPFC do not interfere with extinction learning and retention, while inactivation of the dorsal HPC disrupts fear extinction memory. Here we found in rats that immediate post-training HPC low-frequency stimulation (LFS) suppressed extinction-related LTP in the HPC-mPFC pathway and induced difficulties in extinction recall. HPC tetanus, applied several hours later, failed to re-establish mPFC LTP but facilitated recall of extinction. Delayed post-training HPC LFS also provoked mPFC depotentiation and difficulties with extinction recall. HPC tetanus abolished these two effects. We also found that damage to the mPFC induced fear return only in rats that received HPC LFS following extinction training. HPC tetanus also reversed this behavioral effect of HPC LFS in lesioned rats. These data suggest that the HPC interacts with the mPFC during fear extinction, but can modulate fear extinction independently of this interaction.


Assuntos
Aprendizagem por Associação/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico/fisiologia , Estimulação Elétrica , Masculino , Rememoração Mental/fisiologia , Vias Neurais/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA