Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 58(2): 2515-2522, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37323103

RESUMO

The activation of the Mirror Neuron System (MNS) has been described to reflect visible movements, but not postural, non-visible, adaptations that accompany the observed movements. Since any motor act is the result of a well-tailored dialogue between these two components, we decided to investigate whether a motor resonance to nonvisible postural adaptations could be detected. Possible changes in soleus corticospinal excitability were investigated by eliciting the H-reflex during the observation of three videos, corresponding to three distinct experimental conditions: 'Chest pass', 'Standing' and 'Sitting', and comparing its size with that measured during observation of a control videoclip (a landscape). In the observed experimental conditions, the Soleus muscle has different postural roles: a dynamic role in postural adaptations during the Chest pass; a static role while Standing still; no role while Sitting. The H-reflex amplitude was significantly enhanced in the 'Chest pass' condition compared to the 'Sitting' and 'Standing' conditions. No significant difference was found between 'Sitting' and 'Standing' conditions. The increased corticospinal excitability of the Soleus during the 'Chest pass' condition suggests that the mirror mechanisms produce a resonance to postural components of an observed action, although they may not be visible. This observation highlights the fact that mirror mechanisms echo non intentional movements as well and points to a novel possible role of mirror neurons in motor recovery.


Assuntos
Neurônios-Espelho , Eletromiografia , Músculo Esquelético/fisiologia , Movimento , Reflexo H/fisiologia
2.
Brain Sci ; 13(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37190585

RESUMO

We recently investigated the role of the cerebellum during development, reporting that children with genetic slow-progressive ataxia (SlowP) show worse postural control during quiet stance and gait initiation compared to healthy children (H). Instead, children with genetic non-progressive ataxia (NonP) recalled the behavior of H. This may derive from compensatory networks, which are hindered by disease progression in SlowP while free to develop in NonP. In the aim of extending our findings to intra-limb postural control, we recorded, in 10 NonP, 10 SlowP and 10 H young patients, Anticipatory Postural Adjustments (APAs) in the proximal muscles of the upper-limb and preceding brisk index finger flexions. No significant differences in APA timing occurred between NonP and H, while APAs in SlowP were delayed. Indeed, the excitatory APA in Triceps Brachii was always present but significantly delayed with respect to both H and NonP. Moreover, the inhibitory APAs in the Biceps Brachii and Anterior Deltoid, which are normally followed by a late excitation, could not be detected in most SlowP children, as if inhibition was delayed to the extent where there was overlap with a late excitation. In conclusion, disease progression seems to be detrimental for intra-limb posture, supporting the idea that inter- and intra-limb postures seemingly share the same control mechanism.

3.
Front Physiol ; 12: 789886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987420

RESUMO

Evidence shows that the postural and focal components within the voluntary motor command are functionally unique. In 2015, we reported that the supplementary motor area (SMA) processes Anticipatory Postural Adjustments (APAs) separately from the command to focal muscles, so we are still searching for a hierarchically higher area able to process both components. Among these, the parietal operculum (PO) seemed to be a good candidate, as it is a hub integrating both sensory and motor streams. However, in 2019, we reported that transcranial Direct Current Stimulation (tDCS), applied with an active electrode on the PO contralateral to the moving segment vs. a larger reference electrode on the opposite forehead, did not affect intra-limb APAs associated to brisk flexions of the index-finger. Nevertheless, literature reports that two active electrodes of opposite polarities, one on each PO (dual-hemisphere, dh-tDCS), elicit stronger effects than the "active vs. reference" arrangement. Thus, in the present study, the same intra-limb APAs were recorded before, during and after dh-tDCS on PO. Twenty right-handed subjects were tested, 10 for each polarity: anode on the left vs. cathode on the right, and vice versa. Again, dh-tDCS was ineffective on APA amplitude and timing, as well as on prime mover recruitment and index-finger kinematics. These results confirm the conclusion that PO does not take part in intra-limb APA control. Therefore, our search for an area in which the motor command to prime mover and postural muscles are still processed together will have to address other structures.

4.
Front Hum Neurosci ; 15: 709780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707487

RESUMO

Anticipatory postural adjustments (APAs) are the coordinated muscular activities that precede the voluntary movements to counteract the associated postural perturbations. Many studies about gait initiation call APAs those activities that precede the heel-off of the leading foot, thus taking heel-off as the onset of voluntary movement. In particular, leg muscles drive the center of pressure (CoP) both laterally, to shift the body weight over the trailing foot and backward, to create a disequilibrium torque pushing forward the center of mass (CoM). However, since subjects want to propel their body rather than lift their foot, the onset of gait should be the CoM displacement, which starts with the backward CoP shift. If so, the leg muscles driving such a shift are the prime movers. Moreover, since the disequilibrium torque is mechanically equivalent to a forward force acting at the pelvis level, APAs should be required to link the body segments to the pelvis: distributing such concentrated force throughout the body would make all segments move homogeneously. In the aim of testing this hypothesis, we analyzed gait initiation in 15 right-footed healthy subjects, searching for activities in trunk muscles that precede the onset of the backward CoP shift. Subjects stood on a force plate for about 10 s and then started walking at their natural speed. A minimum of 10 trials were collected. A force plate measured the CoP position while wireless probes recorded the electromyographic activities. Recordings ascertained that at gait onset APAs develop in trunk muscles. On the right side, Rectus Abdominis and Obliquus Abdominis were activated in 11 and 13 subjects, respectively, starting on average 33 and 54 ms before the CoP shift; Erector Spinae (ES) at L2 and T3 levels was instead inhibited (9 and 7 subjects, 104 and 120 ms). On the contralateral side, the same muscles showed excitatory APAs (abdominals in 11 and 12 subjects, 27 and 82 ms; ES in 10 and 7 subjects, 75 and 32 ms). The results of this study provide a novel framework for distinguishing postural from voluntary actions, which may be relevant for the diagnosis and rehabilitation of gait disorders.

5.
Gait Posture ; 71: 56-61, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005856

RESUMO

BACKGROUND: Power and work at the ankle joint during gait are usually computed considering the foot as a rigid body [1-6] (Ankle Joint method, AJ). The foot is instead a deformable structure and can absorb and produce work by pronation/supination, foot arch deformation and other intrinsic movements. A different approach, named "the Distal Shank method (DS)" [7-12] considers all these aspects without increasing the complexity of the protocol, and thus it seems promising for clinical applications [12]. RESEARCH QUESTIONS: a) To characterize the differences in power and work computed using the two mentioned methods for a relatively large number of subjects walking at different velocities, barefoot and with different shoes; b) To assess the practical feasibility of the DS method for clinical applications. MATERIALS AND METHODS: Eighteen healthy subjects were evaluated while walking barefoot at slow, natural and fast velocity. Shod walking was analysed at natural velocity. Four subjects were also analysed while walking in high-heel shoes. The power at the ankle joint was computed with both the AJ and the DS methods. We then compared the obtained results. RESULTS: The DS method showed a consistent negative peak of power absorption during the load acceptance phase, barely visible with the AJ method. The maximum power production calculated with the DS method was significantly lower. The work at the end of the stride cycle was lower with the DS method, and in most conditions even negative, thus indicating higher energy dissipation. SIGNIFICANCE: We confirmed on a large cohort of healthy subjects and in different walking conditions that neglecting foot deformations during gait leads to underestimate power absorption and overestimate power production. The DS method does not require a complex gait analysis protocol, nor additional time for the analysis, and can provide information of clinical interest, related to foot mechanical alterations.


Assuntos
Articulação do Tornozelo , Marcha , Caminhada , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , , Calcanhar , Humanos , Masculino , Pronação , Sapatos , Supinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA