Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(17): 3226-3238.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839781

RESUMO

Oxidative stress conditions can cause ATP depletion, oxidative protein unfolding, and potentially toxic protein aggregation. To alleviate this proteotoxic stress, the highly conserved yeast protein, Get3, switches from its guiding function as an ATP-dependent targeting factor for tail-anchored proteins to its guarding function as an ATP-independent molecular chaperone that prevents irreversible protein aggregation. Here, we demonstrate that activation of Get3's chaperone function follows a tightly orchestrated multi-step process, centered around the redox status of two conserved cysteines, whose reactivity is directly controlled by Get3's nucleotide-binding state. Thiol oxidation causes local unfolding and the transition into chaperone-active oligomers. Vice versa, inactivation requires the reduction of Get3's cysteines followed by ATP-binding, which allows the transfer of bound client proteins to ATP-dependent chaperone systems for their effective refolding. Manipulating this fine-tuned cycle of activation and inactivation in yeast impairs oxidative stress resistance and growth, illustrating the necessity to tightly control Get3's intrinsic chaperone function.


Assuntos
Adenosina Trifosfatases , Fatores de Troca do Nucleotídeo Guanina , Chaperonas Moleculares , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Desdobramento de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 80(1): 72-86.e7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910895

RESUMO

Membrane protein biogenesis faces the challenge of chaperoning hydrophobic transmembrane helices for faithful membrane insertion. The guided entry of tail-anchored proteins (GET) pathway targets and inserts tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane with an insertase (yeast Get1/Get2 or mammalian WRB/CAML) that captures the TA from a cytoplasmic chaperone (Get3 or TRC40, respectively). Here, we present cryo-electron microscopy reconstructions, native mass spectrometry, and structure-based mutagenesis of human WRB/CAML/TRC40 and yeast Get1/Get2/Get3 complexes. Get3 binding to the membrane insertase supports heterotetramer formation, and phosphatidylinositol binding at the heterotetramer interface stabilizes the insertase for efficient TA insertion in vivo. We identify a Get2/CAML cytoplasmic helix that forms a "gating" interaction with Get3/TRC40 important for TA insertion. Structural homology with YidC and the ER membrane protein complex (EMC) implicates an evolutionarily conserved insertion mechanism for divergent substrates utilizing a hydrophilic groove. Thus, we provide a detailed structural and mechanistic framework to understand TA membrane insertion.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Complexos Multiproteicos/metabolismo , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Traffic ; 20(5): 311-324, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972921

RESUMO

Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail-anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40-insert and the hydrophobic groove essential for tail-anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40-insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40-insert is present in all domains of life, we suggest that its presence does not automatically predict a tail-anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40-insert but have not been demonstrated to function in tail-anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.


Assuntos
Adenosina Trifosfatases/química , ATPases Transportadoras de Arsenito/química , Evolução Molecular , Fatores de Troca do Nucleotídeo Guanina/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , ATPases Transportadoras de Arsenito/genética , ATPases Transportadoras de Arsenito/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Bombas de Íon/química , Bombas de Íon/genética , Bombas de Íon/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
4.
J Cell Sci ; 131(10)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661846

RESUMO

Tail-anchored (TA) proteins are anchored to their corresponding membrane via a single transmembrane segment (TMS) at their C-terminus. In yeast, the targeting of TA proteins to the endoplasmic reticulum (ER) can be mediated by the guided entry of TA proteins (GET) pathway, whereas it is not yet clear how mitochondrial TA proteins are targeted to their destination. It has been widely observed that some mitochondrial outer membrane (MOM) proteins are mistargeted to the ER when overexpressed or when their targeting signal is masked. However, the mechanism of this erroneous sorting is currently unknown. In this study, we demonstrate the involvement of the GET machinery in the mistargeting of suboptimal MOM proteins to the ER. These findings suggest that the GET machinery can, in principle, recognize and guide mitochondrial and non-canonical TA proteins. Hence, under normal conditions, an active mitochondrial targeting pathway must exist that dominates the kinetic competition against other pathways.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Neuropsychopharmacol Hung ; 16(1): 43-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24687017

RESUMO

OBJECTIVE: We report a successful treatment with lamotrigine of a patient with hereditary coproporphyria presenting with affective and psychotic symptoms. CASE REPORT: M.F., a 38-year-old, single woman was admitted to an acute psychiatric ward because of suddenly emerging psychosis. Ms F's hereditary coproporphyria was diagnosed 9 years before the current admission. While on treatment with olanzapine (20mg/day) the psychotic symptoms have gradually disappeared. In view of her significant mood fluctuations predominantly with depressed phases, lamotrigine was started and titrated up to 125 mg/day. Ms F's mood gradually became euthymic, suicidal ideations and anxiety disappeared. At 5-month follow-up, while still on lamotrigine, her porphyria was asymptomatic. CONCLUSION: To the best of our knowledge, this is the first report about the safe administration of lamotrigine in hereditary coproporphyria. Lamotrigine did not trigger an acute porphyric attack as confirmed by clinical and laboratory findings.


Assuntos
Antipsicóticos/uso terapêutico , Coproporfiria Hereditária/complicações , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/etiologia , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/etiologia , Triazinas/uso terapêutico , Adulto , Feminino , Humanos , Lamotrigina , Resultado do Tratamento
6.
Nat Commun ; 14(1): 7355, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963916

RESUMO

The eukaryotic guided entry of tail-anchored proteins (GET) pathway mediates the biogenesis of tail-anchored (TA) membrane proteins at the endoplasmic reticulum. In the cytosol, the Get3 chaperone captures the TA protein substrate and delivers it to the Get1/Get2 membrane protein complex (GET insertase), which then inserts the substrate via a membrane-embedded hydrophilic groove. Here, we present structures, atomistic simulations and functional data of human and Chaetomium thermophilum Get1/Get2/Get3. The core fold of the GET insertase is conserved throughout eukaryotes, whilst thinning of the lipid bilayer occurs in the vicinity of the hydrophilic groove to presumably lower the energetic barrier of membrane insertion. We show that the gating interaction between Get2 helix α3' and Get3 drives conformational changes in both Get3 and the Get1/Get2 membrane heterotetramer. Thus, we provide a framework to understand the conformational plasticity of the GET insertase and how it remodels its membrane environment to promote substrate insertion.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Transporte Proteico
7.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587358

RESUMO

The guided entry of tail-anchored proteins (GET) pathway targets C-terminally anchored transmembrane proteins and protects cells from lipotoxicity. Here, we reveal perturbed ergosterol production in ∆get3 cells and demonstrate the sensitivity of GET pathway mutants to the sterol synthesis inhibiting drug terbinafine. Our data uncover a key enzyme of sterol synthesis, the hairpin membrane protein squalene monooxygenase (Erg1), as a non-canonical GET pathway client, thus rationalizing the lipotoxicity phenotypes of GET pathway mutants. Get3 recognizes the hairpin targeting element of Erg1 via its classical client-binding pocket. Intriguingly, we find that the GET pathway is especially important for the acute upregulation of Erg1 induced by low sterol conditions. We further identify several other proteins anchored to the endoplasmic reticulum (ER) membrane exclusively via a hairpin as putative clients of the GET pathway. Our findings emphasize the necessity of dedicated targeting pathways for high-efficiency targeting of particular clients during dynamic cellular adaptation and highlight hairpin proteins as a potential novel class of GET clients.


Assuntos
Adenosina Trifosfatases , Fatores de Troca do Nucleotídeo Guanina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Esqualeno Mono-Oxigenase , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Esteróis/metabolismo
8.
Neuropsychopharmacol Hung ; 13(3): 127-38, 2011 Sep.
Artigo em Húngaro | MEDLINE | ID: mdl-21876221

RESUMO

Marijuana (cannabis) is the most commonly abused drug by adolescents and young adults and also by people with schizophrenia or other psychotic disorders. An increasing number of studies suggest that regular cannabis users can show psychotic episodes similar to schizophrenic disorders but it still unclear if cannabis induced psychotic disorder is a distinct entity requiring special therapy or regular cannabis use consequently leads to schizophrenia. Therefore, we retrospectively compared psychotic patients with and without cannabis use by clinical profile. Clinical data of 85 patients with schizophrenia spectrum disorder were analyzed retrospectively. Cannabis use was not reported by 43 persons (Cnbs0 subgroup) and 42 patients used regularly cannabis during at least 1 year (Cnbs1 subgroup). Clinical data were collected from electronic medical documentation of patients concerning anamnesis, family history, socio-demographic condition, symptoms and psychiatric state, acute and long-term therapies. Men were over-represented in the cannabis abuser group while mean age was lower among them compared to the Cnbs0 subgroup. Prevalence of suicidal attempts was increased in men without cannabis use. Patients without cannabis use spent more time in hospital and smoking was more frequent among them. Positive and negative symptoms and family history did not differ significantly between the two subgroups. Dosage, intensity and length of pharmacotherapy was different between the two subgroups. These results revealed that certain clinical aspects were different in case of cannabis-related schizophrenia spectrum disorder compared to schizophrenia.


Assuntos
Antipsicóticos/administração & dosagem , Abuso de Maconha/diagnóstico , Abuso de Maconha/psicologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/diagnóstico , Adolescente , Adulto , Agressão/efeitos dos fármacos , Aripiprazol , Benzodiazepinas/administração & dosagem , Clozapina/administração & dosagem , Dibenzotiazepinas/administração & dosagem , Alucinações/induzido quimicamente , Haloperidol/administração & dosagem , Humanos , Hungria/epidemiologia , Masculino , Abuso de Maconha/tratamento farmacológico , Abuso de Maconha/epidemiologia , Olanzapina , Transtornos Paranoides/induzido quimicamente , Piperazinas/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Fumarato de Quetiapina , Quinolonas/administração & dosagem , Estudos Retrospectivos , Risperidona/administração & dosagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/epidemiologia , Psicologia do Esquizofrênico
9.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34264263

RESUMO

Tail-anchored (TA) proteins fulfill diverse cellular functions within different organellar membranes. Their characteristic C-terminal transmembrane segment renders TA proteins inherently prone to aggregation and necessitates their posttranslational targeting. The guided entry of TA proteins (GET in yeast)/transmembrane recognition complex (TRC in humans) pathway represents a major route for TA proteins to the endoplasmic reticulum (ER). Here, we review important new insights into the capture of nascent TA proteins at the ribosome by the GET pathway pretargeting complex and the mechanism of their delivery into the ER membrane by the GET receptor insertase. Interestingly, several alternative routes by which TA proteins can be targeted to the ER have emerged, raising intriguing questions about how selectivity is achieved during TA protein capture. Furthermore, mistargeting of TA proteins is a fundamental cellular problem, and we discuss the recently discovered quality control machineries in the ER and outer mitochondrial membrane for displacing mislocalized TA proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Evolução Molecular , Humanos , Transporte Proteico , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
10.
Orv Hetil ; 151(35): 1403-8, 2010 Aug 29.
Artigo em Húngaro | MEDLINE | ID: mdl-20719713

RESUMO

Delineating the pathogenesis of multifactorial diseases is a major challenge of the postgenomial era. Genetic factors are known to play an important role in the pathogenesis of certain psychiatric disorders as well as in the development of adverse reactions to psychoactive drugs. Containing large numbers of samples and linking them clinical data, biobanks are gaining importance in the studies of chronic multifactorial diseases. Several biobanks are under establishment in Hungary. The first initiative to collect samples in neurological and psychiatric disorders was the NEPSYBANK coordinated by the Hungarian Society of Clinical Neurogenetics. The national biobank network is currently established by the NEKIFUT project of the National Office of Research and Technology. In this article we describe the structure, logistics and informatical background of the national schizophrenia biobank (SCHIZOBANK). The initiative of the SCHIZOBANK originates from a consortium in which academy and health industry partners are collecting biological materials and data in five major psychiatric center under the coordination of the Medical and Health Science Center of the University of Debrecen. We review other international schizophrenia biobanks as well. Major strength of the SCHIZOBANK is the collection of very detailed phenotypic data and of RNA and plasma both in psychotic and non-psychotic state of the patient which permits longitudinal follow-up and the study of both static and dynamically changing transcriptomic, proteomic and metabolomic markers. The collection of the SCHIZOBANK is available not only to consortial partners but to other national and international research groups as well.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica , Transtornos Mentais , Bancos de Espécimes Biológicos/organização & administração , Bancos de Espécimes Biológicos/normas , Bancos de Espécimes Biológicos/tendências , Setor de Assistência à Saúde , Humanos , Hungria , Manejo de Espécimes/normas , Manejo de Espécimes/tendências , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA