Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mar Drugs ; 22(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667780

RESUMO

Approximately 75,000 tons of different sea urchin species are globally harvested for their edible gonads. Applying a circular economy approach, we have recently demonstrated that non-edible parts of the Mediterranean Sea urchin Paracentrotus lividus can be fully valorized into high-value products: antioxidant pigments (polyhydroxynaphthoquinones-PHNQs) and fibrillar collagen can be extracted to produce innovative biomaterials for biomedical applications. Can waste from other edible sea urchin species (e.g., Sphaerechinus granularis) be similarly valorised? A comparative study on PHNQs and collagen extraction was conducted. PHNQ extraction yields were compared, pigments were quantified and identified, and antioxidant activities were assessed (by ABTS assay) and correlated to specific PHNQ presence (i.e., spinochrome E). Similarly, collagen extraction yields were evaluated, and the resulting collagen-based biomaterials were compared in terms of their ultrastructure, degradation kinetics, and resistance to compression. Results showed a partially similar PHNQ profile in both species, with significantly higher yield in P. lividus, while S. granularis exhibited better antioxidant activity. P. lividus samples showed higher collagen extraction yield, but S. granularis scaffolds showed higher stability. In conclusion, waste from different species can be successfully valorised through PHNQ and collagen extraction, offering diverse applications in the biomedical field, according to specific technical requirements.


Assuntos
Antioxidantes , Colágeno , Paracentrotus , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Colágeno/química , Paracentrotus/química , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Ouriços-do-Mar/química , Resíduos , Materiais Biocompatíveis/química , Perda e Desperdício de Alimentos
2.
Sensors (Basel) ; 23(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616643

RESUMO

A new molecularly imprinted electrochemical sensor was proposed to determine 4,4'-methylene diphenyl diamine (MDA) using molecularly imprinted polymer-multiwalled carbon nanotubes modified glassy carbon electrode (MIP/MWCNTs/GCE). GCE was coated by MWCNTs (MWCNTs/GCE) because of their antifouling qualities and in order to improve the sensor sensitivity. To make the whole sensor, a polymeric film made up of chitosan nanoparticles was electrodeposited by the cyclic voltammetry method on the surface of MWCNTs/GCE in the presence of MDA as a template. Different parameters such as scan cycles, elution time, incubation time, molar ratio of template molecules to functional monomers, and pH were optimized to increase the performance of the MIP sensor. With a detection limit of 15 nM, a linear response to MDA was seen in the concentration range of 0.5-100 µM. The imprinting factor (IF) of the proposed sensor was also calculated at around 3.66, demonstrating the extremely high recognition performance of a MIP/MWCNT-modified electrode. Moreover, the sensor exhibited good reproducibility and selectivity. Finally, the proposed sensor was efficiently used to determine MDA in real samples with satisfactory recoveries ranging from 94.10% to 106.76%.


Assuntos
Impressão Molecular , Nanotubos de Carbono , Impressão Molecular/métodos , Diaminas , Nanotubos de Carbono/química , Reprodutibilidade dos Testes , Biopolímeros , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
3.
Eye Contact Lens ; 43(3): 181-185, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27078617

RESUMO

OBJECTIVES: This article compares the optical performance of soft contact lenses (CLs) treated with multipurpose or hydrogen peroxide care systems. METHODS: The investigated care systems were (1) 3% hydrogen peroxide solution Oxysept (Abbot Medical Optics, Abbott Park, IL) and (2) multipurpose solution Regard (Vita Research, Ariccia, Italy). Three types of silicone hydrogel CLs were studied (comfilcon A, lotrafilcon B, and balafilcon A), unworn and exposed for 30 times to the solutions, which were replaced every 8 hr. The optical performance of the CLs was evaluated through the on-eye transmitted light wavefront patterns by considering new CLs as references. The surface morphology of the CLs was investigated by scanning electron microscopy. RESULTS: Statistically significant modifications in the range 0.1 to 0.3 µm of Zernicke coefficients and modifications of the root mean square of the wavefront aberration function were found for CLs treated with multipurpose solution, in agreement with the observed modifications of the surface morphology. Statistically significant changes were also found after exposure to the hydrogen peroxide solution, but the variation of the Zernicke coefficients was found lower than 0.1 µm, thus being negligible in CL optical performances. CONCLUSIONS: In addition to disinfection ability and ocular surface reactions, CL care systems are different in solution-related CL optical performance. Multipurpose solutions may affect the CL surface morphology with significant modifications of the transmitted light wavefront pattern.


Assuntos
Soluções para Lentes de Contato/química , Lentes de Contato , Dispositivos de Armazenamento Óptico , Contaminação de Equipamentos/prevenção & controle , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura
4.
Nanotechnology ; 26(27): 275703, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26080998

RESUMO

Polymer nanocomposites are increasingly important in food packaging sectors. Biopolymer pullulan is promising in manufacturing packaging films or coatings due to its excellent optical clarity, mechanical strength, and high water-solubility as compared to other biopolymers. This work aims to enhance its oxygen barrier properties and overcome its intrinsic brittleness by utilizing two-dimensional planar graphene oxide (GO) nanoplatelets. It has been found that the addition of only 0.2 wt% of GO enhanced the tensile strength, Young's modulus, and elongation at break of pullulan films by about 40, 44 and 52%, respectively. The light transmittance at 550 nm of the pullulan/GO films was 92.3% and haze values were within 3.0% threshold, which meets the general requirement for food packaging materials. In particular, the oxygen permeability coefficient of pullulan was reduced from 6337 to 2614 mL µm m(-2) (24 h(-1)) atm(-1) with as low as 0.05 wt% of GO loading and further to 1357 mL µm m(-2) (24 h(-1)) atm(-1) when GO concentration reached 0.3 wt%. The simultaneous improvement of the mechanical and oxygen barrier properties of pullulan was ascribed to the homogeneous distribution and prevalent unidirectional alignment of GO nanosheets, as determined from the characterization and theoretical modelling results. The exceptional oxygen barrier properties of pullulan/GO nanocomposites with enhanced mechanical flexibility and good optical clarity will add new values to high performance food packaging materials.


Assuntos
Embalagem de Alimentos/métodos , Glucanos/química , Grafite/química , Nanocompostos/química , Óxidos/química , Oxigênio/química , Oxigênio/análise , Permeabilidade
5.
Polymers (Basel) ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932094

RESUMO

The quest for sustainable and functional food packaging materials has led researchers to explore biopolymers such as pullulan, which has emerged as a notable candidate for its excellent film-forming and anti-fogging properties. This study introduces an innovative anti-fog coating by combining pullulan with poly (acrylic acid sodium salt) to enhance the display of packaged food in high humidity environments without impairing the sealing performance of the packaging material-two critical factors in preserving food quality and consumers' acceptance. The research focused on varying the ratios of pullulan to poly (acrylic acid sodium salt) and investigating the performance of this formulation as an anti-fog coating on bioriented polypropylene (BOPP). Contact angle analysis showed a significant improvement in BOPP wettability after coating deposition, with water contact angle values ranging from ~60° to ~17° for formulations consisting only of poly (acrylic acid sodium salt) (P0) or pullulan (P100), respectively. Furthermore, seal strength evaluations demonstrated acceptable performance, with the optimal formulation (P50) achieving the highest sealing force (~2.7 N/2.5 cm) at higher temperatures (130 °C). These results highlight the exceptional potential of a pullulan-based coating as an alternative to conventional packaging materials, significantly enhancing anti-fogging performance.

6.
Int J Biol Macromol ; 254(Pt 1): 127689, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918611

RESUMO

The current work aims to produce nanoparticle-infused starch-based bioactive thermoplastic packaging films. The FeO and ZnO nanoparticles were examined to be potential active ingredients for the production of nanoparticle-infused bioactive thermoplastic packaging films. The bio-thermoplastic films infused with FeO and ZnO nanoparticles showed high oxygen scavenging and antimicrobial activity, respectively. Consecutively, both films were combined to form a double-layer Nano-Biothermoplastic packaging system for food preservation. The distribution and diffusion of nanoparticles in starch-based films were examined to be influenced by the amorphous character of starch and the swelling index of the film, respectively. The amorphous property of starch molecules showed a masking effect on the crystalline characteristics of nanoparticles in Nano-Biothermoplastic films. The diffusion of nanoparticles from the Nano-Biothermoplastic packaging system was found to influence the microbial, chemical, and color characteristics of mutton and chicken meat stored at 4 °C.


Assuntos
Nanopartículas , Óxido de Zinco , Embalagem de Alimentos , Amido/química , Óxido de Zinco/química , Carne , Conservação de Alimentos , Nanopartículas/química
7.
Carbohydr Polym ; 344: 122539, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218557

RESUMO

In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.


Assuntos
Celulose , Citrus , Resíduos Industriais , Nanopartículas , Pectinas , Pectinas/química , Pectinas/isolamento & purificação , Citrus/química , Celulose/química , Nanopartículas/química , Resíduos Industriais/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sonicação/métodos , Hesperidina/química , Hesperidina/isolamento & purificação
8.
Heliyon ; 9(4): e15327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37096008

RESUMO

Developing simple, cost-effective, easy-to-use, and reliable analytical devices if of utmost importance for the food industry for rapid in-line checks of their products that must comply with the provisions set by the current legislation. The purpose of this study was to develop a new electrochemical sensor for the food packaging sector. More specifically, we propose a screen-printed electrode (SPE) modified with cellulose nanocrystals (CNCs) and gold nanoparticles (AuNPs) for the quantification of 4,4'-methylene diphenyl diamine (MDA), which is one of the most important PAAs that can transfer from food packaging materials into food stuffs. The electrochemical performance of the proposed sensor (AuNPs/CNCs/SPE) in the presence of 4,4'-MDA was evaluated using cyclic voltammetry (CV). The modified AuNPs/CNCs/SPE showed the highest sensitivity for 4,4'-MDA detection, with a peak current of 9.81 µA compared with 7.08 µA for the bare SPE. The highest sensitivity for 4,4'-MDA oxidation was observed at pH = 7, whereas the detection limit was found at 57 nM and the current response of 4,4'-MDA rose linearly as its concentration increased from 0.12 µM to 100 µM. Experiments using real packaging materials revealed that employing nanoparticles dramatically improved both the sensitivity and the selectivity of the sensor, which can be thus considered as a new analytical tool for quick, simple, and accurate measurement of 4,4'-MDA during converting operations.

9.
Nanoscale ; 15(31): 13037-13048, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37492887

RESUMO

Graphene oxide (GO) was used in this study as a template to successfully synthesize silicon oxide (SiOx) based 2D-nanomaterials, adapting the same morphological features as the GO sheets. By performing a controlled condensation reaction using low concentrations of GO (<0.5 wt%), the study shows how to obtain 2D-nanoflakes, consisting of GO-flakes coated with a silica precursor that were ca. 500 nm in lateral diameter and ca. 1.5 nm in thickness. XPS revealed that the silanes had linked covalently with the GO sheets at the expense of the oxygen groups present on the GO surface. The GO template was shown to be fully removable through thermal treatment without affecting the nanoflake morphology of the pure SiOx-material, providing a methodology for large-scale preparation of SiOx-based 2D nanosheets with nearly identical dimensions as the GO template. The formation of SiOx sheets using a GO template was investigated for two different silane precursors, (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), showing that both precursors were capable of accurately templating the graphene oxide template. Molecular modeling revealed that the choice of silane affected the number of layers coated on the GO sheets. Furthermore, rheological measurements showed that the relative viscosity was significantly affected by the specific surface area of the synthesized particles. The protocol used showed the ability to synthesize these types of nanoparticles using a common aqueous alcohol solvent, and yield larger amounts (∼1 g) of SiOx-sheets than what has been previously reported.

10.
Langmuir ; 28(30): 11206-14, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22765289

RESUMO

In this paper, the preparation and characterization of oxygen barrier pullulan sodium montmorillonite (Na(+)-MMT) nanocomposite coatings are presented for the first time. Full exfoliation of platelets during preparation of the coating water dispersions was mediated by ultrasonic treatment, which turned out to be a pivotal factor in the oxygen barrier performance of the final material even at high relative humidity (RH) conditions [oxygen permeability coefficients ~1.43 ± 0.39 and 258.05 ± 13.78 mL·µm·m(-2)·(24 h)(-1)·atm(-1) at 23 °C and 0% RH and 70% RH, respectively]. At the micro- and nanoscale, the reasons are discussed. The final morphology of the coatings revealed that clay lamellae were stacked on top of one another, probably due to the forced confinement of the platelets within the coating thickness after solvent evaporation. This was also confirmed by modeling the experimental oxygen permeability data with the well-known Nielsen and Cussler permeation theoretical models, which suggested a reasonable aspect ratio (α) of ~100. Electron microscopic analyses also disclosed a peculiar cell-like arrangement of the platelets. The stacking of the clay lamellae and the cell-like arrangement create the excellent oxygen barrier properties. Finally, we demonstrated that the slight haze increase in the bionanocomposite coating materials arising from the addition of the clays depends on the clay concentration but not so much on the sonication time, due to the balance of opposite effects after sonication (an increase in the number of scattering centers but a reduction in their size).


Assuntos
Bentonita/química , Nanocompostos/química , Oxigênio/química , Glucanos/química , Nanotecnologia/métodos , Permeabilidade , Sonicação , Propriedades de Superfície
11.
Foods ; 11(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35681352

RESUMO

This work assessed the antimicrobial potential of natural essential oils (EOs) from cinnamon (CEO), zataria (ZEO), and satureja (SEO), applied natively or as coatings against Penicillium expansum and Botrytis cinerea during both in vitro and in vivo (on apple fruits) experiments. The induced inhibitory effect towards fungal growth, as a function of both EO type and concentration (75-1200 µL/L), was preliminarily investigated to select the most suitable EO for producing bacterial cellulose nanocrystals (BCNCs)/fish gelatin (GelA)-based emulsions. CEO and ZEO exhibited the best performances against P. expansum and B. cinerea, respectively. None of the pristine EOs completely inhibited the fungal growth and "disease severity", properly quantified via size measurements of lesions formed on fruit surfaces. As compared to pristine CEO, coating emulsions with variable CEO concentration (75-2400 µL/L) curbed lesion spreading on apples, owing to the controlled CEO release during a 21-day temporal window. The strongest effect was displayed by BCNCs/GelA-CEO emulsions at the highest CEO concentration, upon which lesions on fruit skins were barely detectable. This work demonstrated the capability of EOs embedded in BCNCs/GelA-based nanocapsules to efficiently slow down microbial spoilage on postharvest fruits, thus offering viable opportunities for developing innovative antimicrobial packaging systems.

12.
Langmuir ; 27(12): 7563-74, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21619017

RESUMO

The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan. However, the water drop profile began to change immediately following drop deposition for all biocoatings, confirming that the concept of water contact angle equilibrium is not applicable to most biopolymers. First, a three-parameter decay equation [θ(t) = θ(0) exp(kt(n))] was fit to the experimental contact angle data to describe the kinetics of the contact angle change for each biocoating. Interestingly, the k constant correlated well with the contact angle evolution rate and the n exponent seemed to be somehow linked to the physicochemical phenomena underlying the overall kinetics process. Second, to achieve a reliable description of droplet evolution, the contact angle (CA) analysis was coupled with image analysis (IA) through a combined geometric/trigonometric approach. Absorption and spreading were the key factors governing the overall mechanism of surface wetting during the 60 s analysis, although the individual quantification of both phenomena demonstrated that spreading provided the largest contribution for all biopolymers, with the only exception of gelatin, which showed two quasi-equivalent and counterbalancing effects. The possible correlation between these two phenomena and the topography of the biopolymer surfaces are then discussed on the basis of atomic force microscopy analyses.


Assuntos
Biopolímeros/química , Molhabilidade , Cinética , Propriedades de Superfície
13.
PLoS One ; 16(1): e0246429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33513176

RESUMO

Flooding risk in cities has been recently exacerbated by increased urbanization and climate change, often with catastrophic consequences in terms of casualties and economic losses. Rainwater harvesting systems and green roofs are recognized as being among the most effective blue-green mitigation measures. However, performances of these systems have currently been investigated only at laboratory or very-small local scales. In this work, we assess the potential benefit of the extensive installation of these solutions on all the rooftops of 9 cities, with different climatological and geographical characteristics. Both surface discharge reduction and delay between rainfall and runoff peak generation have been investigated. Green roofs ensure a larger average lag time between rainfall and runoff peaks than rainwater harvesting systems, without significant differences between intensive and extensive structures. On the other hand, the cost-efficiency analysis, considering the entire urban area, shows a higher retention capacity with a lower financial investment for rainwater harvesting rather than for green roofs in most cases. For extreme rainfall events, large-scale installation of rainwater harvesting systems coupled with intensive green roofs over the entire city have shown to be the most efficient solution, with a total discharge reduction that can vary from 5% to 15%, depending on the city characteristics and local climate.


Assuntos
Conservação dos Recursos Naturais , Inundações/prevenção & controle , Reforma Urbana , Movimentos da Água , Cidades , Humanos
14.
Foods ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922671

RESUMO

The performance of two innovative packaging materials was investigated on two Sardinian extra-virgin olive oils (Nera di Gonnos and Bosana). In particular, a transparent plastic film loaded with a UV-blocker (packaging B) and a metallized material (packaging C) were compared each other and to brown-amber glass (packaging A). During accelerated shelf-life tests at 40 and 60 °C, the evolution of quality parameters (i.e., acidity, peroxide value, K270, and phenolic content) was monitored, together with the aromatic fingerprint evaluated by electronic nose. Packaging B resulted in the best-performing material in protecting oil from oxidation, due to its lower oxygen transmission rate (0.1 ± 0.02 cm3/m2 24 h) compared to packaging C (0.23 ± 0.04 cm3/m2 24 h). At the end of storage, phenolic reduction was on average 25% for packaging B and 58% for packaging C, and the aromatic fingerprint was better preserved in packaging B. In addition, other factors such as the sanitary status of the olives at harvesting and the storage temperature were demonstrated to have a significant role in the shelf life of packaged extra-virgin olive oil.

15.
Mater Sci Eng C Mater Biol Appl ; 126: 112143, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082954

RESUMO

Microbial contamination of water represents a great threat to the public health that has attracted worldwide attention. In this work, polypyrrole magnetic nanoparticles (Fe3O4@PPy NPs) with sterilization properties were fabricated. More specifically, the Fe3O4@PPy NPs obtained via aqueous dispersion polymerization and an in situ chemical oxidative polymerization exhibited a cationic surface and high photothermal conversion efficiency. More than 50% of bacteria adsorption can be achieved at a dosage of 100 µg/mL Fe3O4@PPy NPs under magnetic field, and high photothermal sterilization efficacy (~100%) can be obtained upon NIR exposure at the same dosage for 10 min. Noteworthy, the Fe3O4@PPy NPs can be recycled by magnetism and reused without affecting their photothermal sterilization capability. This study clearly provides experimental evidence of the great potential of Fe3O4@PPy NPs as stable and reusable nanocomposite materials for bacteria adsorption and photothermal sterilization performance. The application of Fe3O4@PPy NPs can realize enviromental-friendly bacterial contaminated water treatment as well as provide stratgies for synergistical antibacterial materials design.


Assuntos
Nanopartículas , Polímeros , Bactérias , Fototerapia , Pirróis
16.
Nanomaterials (Basel) ; 10(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290503

RESUMO

Bacterial cellulose nanocrystals (BCNCs) obtained by enzymatic hydrolysis have been loaded in pullulan biopolymer for use as nanoparticles in the generation of high-oxygen barrier coatings intended for food packaging applications. Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was hydrolyzed by two different enzymatic treatments, i.e., using endo-1,4-ß-glucanases (EGs) from Thermobifida halotolerans and cellulase from Trichoderma reesei. The hydrolytic activity was compared by means of turbidity experiments over a period of 145 h, whereas BCNCs in their final state were compared, in terms of size and morphology, by atomic force microscopy (AFM) and dynamic light scattering (DLS). Though both treatments led to particles of similar size, a greater amount of nano-sized particles (≈250 nm) were observed in the system that also included cellulase enzymes. Unexpectedly, transmission electron microscopy (TEM) revealed that cellulose nanoparticles were round-shaped and made of 4-5 short (150-180 nm) piled whiskers. Pullulan/BCNCs nanocomposite coatings allowed an increase in the overall oxygen barrier performance, of more than two and one orders of magnitude (≈0.7 mL·m-2·24 h-1), of pure polyethylene terephthalate (PET) (≈120 mL·m-2·24 h-1) as well as pullulan/coated PET (≈6 mL·m-2·24 h-1), with no significant difference between treatments (hydrolysis mediated by EGs or with the addition of cellulase). BCNCs obtained by enzymatic hydrolysis have the potential to generate high oxygen barrier coatings for the food packaging industry.

17.
Sci Rep ; 10(1): 21358, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288830

RESUMO

Applying a circular economy approach, this research explores the use of cheese whey permeate (CWP), by-product of whey ultrafiltration, as cheap substrate for the production of bacterial cellulose (BC) and Sakacin-A, to be used in an antimicrobial packaging material. BC from the acetic acid bacterium Komagataeibacter xylinus was boosted up to 6.77 g/L by supplementing CWP with ß-galactosidase. BC was then reduced to nanocrystals (BCNCs, 70% conversion yield), which were then conjugated with Sakacin-A, an anti-Listeria bacteriocin produced by Lactobacillus sakei in a CWP based broth. Active conjugates (75 Activity Units (AU)/mg), an innovative solution for bacteriocin delivery, were then included in a coating mixture applied onto paper sheets at 25 AU/cm2. The obtained antimicrobial food package was found effective in reducing Listeria population in storage trials carried out on a fresh Italian soft cheese (named "stracchino") intentionally inoculated with Listeria. Production costs of the active material have been mainly found to be associated (90%) to the purification steps. Setting a maximum prudential 50% cost reduction during process up-scaling, conjugates coating formulation would cost around 0.89 €/A4 sheet. Results represent a practical example of a circular economy production procedure by using a food industry by-product to produce antimicrobials for food preservation.


Assuntos
Bacteriocinas/metabolismo , Celulose/metabolismo , Queijo , Soro do Leite/metabolismo , Acetobacteraceae/metabolismo , Embalagem de Alimentos , Nanopartículas/metabolismo , Soro do Leite/química
18.
ACS Omega ; 4(2): 3458-3468, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459561

RESUMO

Conductive natural rubber (NR) nanocomposites were prepared by solvent-casting suspensions of reduced graphene oxide (rGO) or carbon nanotubes (CNTs), followed by vulcanization of the rubber composites. Both rGO and CNT were compatible as fillers in the NR as well as having sufficient intrinsic electrical conductivity for functional applications. Physical (thermal) and chemical reduction of GO were investigated, and the results of the reductions were monitored by X-ray photoelectron spectroscopy for establishing a reduction protocol that was useful for the rGO nanocomposite preparation. Field-emission scanning electron microscopy showed that both nanofillers were adequately dispersed in the main NR phase. The CNT composite displays a marked mechanical hysteresis and higher elongation at break, in comparison to the rGO composites for an equal fraction of the carbon phase. Moreover, the composite conductivity was always ca. 3-4 orders of magnitude higher for the CNT composite than for the rGO composites, the former reaching a maximum conductivity of ca. 10.5 S/m, which was explained by the more favorable geometry of the CNT versus the rGO sheets. For low current density applications though, both composites achieved the necessary percolation and showed the electrical conductivity needed for being applied as flexible conductors for a light-emitting diode.

19.
J Colloid Interface Sci ; 512: 638-646, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29102910

RESUMO

Fundamental physical behaviors of materials at the nanoscale level are crucial when local aspects govern the macroscale performance of nanocomposites, e.g., interface and surface phenomena. Because of the increasing interest in biopolymer nanocomposite coatings for many different applications (e.g., optical devices, displays/screens, and packaging), this work investigates the potential of nanoindentation as a method for clarifying the interplay between distinct phases (i.e., organic and inorganic) at local level in thin biopolymer films loaded with nanoparticles. The nanomechanical features of pullulan nanocomposite coatings laid on polyethylene terephthalate (PET) were quantified in terms of elastic modulus (E), hardness (H), and creep (C) through an instrumented indentation test composed of a loading-holding-unloading cycle. Colloidal silica (CS) and cellulose nanocrystals (CNCs) were used as spherical and rod-like nanoparticles, respectively. An overall reinforcing effect was shown for all nanocomposite coatings over the pristine (unfilled) pullulan coating. A size effect was also disclosed for the CS-loaded surfaces, with the highest E value recorded for the largest particles (8.19 ±â€¯0.35 GPa) and the highest H value belonging to the smallest ones (395.41 ±â€¯25.22 MPa). Comparing CS and CNCs, the addition of spherical nanoparticles had a greater effect on the surface hardness than cellulose nanowhiskers (353.50 ±â€¯83.52 MPa and 321.36 ±â€¯43.26 MPa, respectively). As for the elastic modulus, the addition of CS did not provide any improvement over both the bare and CNC-loaded pullulan coatings, whereas the coating including CNCs exhibited higher E values (p < .05). Finally, CS-loaded pullulan coatings were the best performing in terms of C properties, with an average indentation depth of 16.5 ±â€¯1.85 nm under a load of ∼190 µN. These results are discussed in terms of local distribution gradients, surface chemistry of nanoparticles, and how nanoparticle aggregation occurred in the dry nanocomposite coatings.

20.
Cont Lens Anterior Eye ; 40(5): 335-339, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28693972

RESUMO

Soft contact lenses used for the correction of ametropia are often made of hydrogel and silicone-hydrogel materials. Since they are placed directly on the surface of the eye and they are hydrated by tears, eye cosmetics can compromise the lens performance and, even worse, can be transported from an external environment to the ocular surface through the contact lens. The diffusion of the dye component of a purple eyeshadow in soft contact lenses of different materials is here evaluated. Diffusivity is found to be typically higher in silicone-hydrogels than in hydrogels. In hydrogels, diffusivity is greater in the case of lower oxygen transmissibility. Despite differences between materials, absorbed mass of dye is much larger (10-100 times) than the expected mass by simple hydration and swelling of the contact lens. The most contaminated materials are also resistant to cleaning solutions. The results indicate that, notwithstanding the complexity of contact lens networks, diffusion of dye is found to follow Fick's law and it is driven by polymer-dye interaction, which governs lens hydration and swelling.


Assuntos
Corantes/metabolismo , Lentes de Contato Hidrofílicas , Cosméticos , Hidrogel de Polietilenoglicol-Dimetacrilato , Elastômeros de Silicone , Difusão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA