Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Autoimmun ; 122: 102666, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34144327

RESUMO

BACKGROUND: BALB/c mice which received long-term immunizations of adenovirus (Ad) expressing thyrotropin receptor A-subunits (TSHR) developed stable Graves' disease (GD). TSHR-derived cyclic peptide 19 (P19) was identified as effective therapy in this model. METHODS: In Ad-TSHR mice, we investigated shorter disease intervals up to 4 months for histological alterations of the orbits, fine tuning of anti-TSHR antibodies (Ab) and free thyroxine (fT4) hormone levels by using novel detection methods in an independent laboratory. Therapy (0.3 mg/kg P19 or vehicle) was given intravenously after the fourth Ad-TSHR immunization (week 11) and continued until week 19. RESULTS: Thyrotropin binding inhibitory immunoglobulins (TBII, bridge immunoassay), blocking (TBAb) and stimulating (TSAb) TSHR-Ab (both cell-based bioassays) and serum levels of fT4 were significantly elevated at week 11 in Ad-TSHR-immunized mice versus none in control mice. For the first time, TSAb, TBAb, and thyroperoxidase-Ab were detected in 17 of 19, 12/19 and 6/19 Ad-TSHR immunized mice, respectively at week 21. Also, for the first time, this study showed that P19 treatment markedly reduced serum TBII (p < 0.0001), serum fT4 (p = 0.02), and acidic mucins and collagen content in the orbital tissue of Ad-TSHR-immunized mice. CONCLUSION: P19 significantly improved thyroid function, confirming previous results in an independent second laboratory. A relevant shift of anti-TSHR antibody subpopulations in response to P19 therapy may help explain its immunological effects. Moreover, P19 exerted a beneficial effect on mucine and collagen content of orbital tissue. Hence, P19 offers a potential novel therapeutic approach for GD and associated orbitopathy.


Assuntos
Doença de Graves/tratamento farmacológico , Oftalmopatia de Graves/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Animais , Colágeno/análise , Modelos Animais de Doenças , Feminino , Doença de Graves/sangue , Doença de Graves/imunologia , Doença de Graves/fisiopatologia , Oftalmopatia de Graves/imunologia , Oftalmopatia de Graves/patologia , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide/sangue , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Camundongos , Mucinas/análise , Órbita/efeitos dos fármacos , Órbita/patologia , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/uso terapêutico , Receptores da Tireotropina/administração & dosagem , Receptores da Tireotropina/genética , Receptores da Tireotropina/imunologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/imunologia , Glândula Tireoide/fisiopatologia
2.
PLoS One ; 16(8): e0255363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347814

RESUMO

The standard histological processing procedure, which produces excellent staining of sections for most tissues, fails to yield satisfactory results in adult mouse orbits or eyeballs. Here, we show that a protocol using tissue block staining and domestic adhesive tapes resulted in qualified integral serial cryo-sections of whole orbits or eyeballs, and the fine structures were well preserved. The histological processing protocol comprises paraformaldehyde fixation, ethylenediaminetetraacetic acid decalcification, tissue block staining with hematoxylin and eosin, embedding, adhesive tape aided sectioning, and water-soluble mounting. This protocol was proved to be the best in comparison with seven other related existing histological traditional or non-traditional processing methods, according to the staining slice quality. We observed a hundred percent success rate in sectioning, collection, and mounting with this method. The reproducibility tested on qualified section success rates and slice quality scores confirmed that the technique is reliable. The feasibility of the method to detect target molecules in orbits was verified by successful trial tests on block immunostaining and adhesive tape-aided sectioning. Application of this protocol in joints, brains, and so on,-the challenging integral sectioning tissues, also generated high-quality histological staining sections.


Assuntos
Olho/anatomia & histologia , Órbita/anatomia & histologia , Preservação de Tecido/instrumentação , Animais , Criopreservação , Estudos de Viabilidade , Feminino , Camundongos , Microtomia , Coloração e Rotulagem , Fita Cirúrgica , Inclusão do Tecido , Fixação de Tecidos , Preservação de Tecido/métodos
3.
Sci Rep ; 11(1): 17345, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462464

RESUMO

Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease which affects primarily the joints. Peptides of several proteins have shown an effect in some experimental animal models of RA. We investigated arthritis development in male DBA/1 mice which were injected with bovine collagen II (bCII) and human fibrinogen (hFib) on days 0 and 21, leading to stable and reproducible disease induction in 100% of immunized mice (FIA-CIA). In a second study, two bCII-derived peptides were given three times in the course of 6 weeks after FIA-CIA induction to test for impact on arthritis. Mice were scored weekly for arthritis and anti-citrullinated peptide antibodies (ACPAs) were determined in the sera taken on days 0, 14, 35, 56 and 84. Histology of the hind paws was performed at the end of the experiment. Intravenous administration of peptide 90578, a novel fructosylated peptide derived from the immunodominant T cell epitope of bCII, at a dosage of 1 mg/kg resulted in significant beneficial effects on clinical outcome parameters and on the arthritis histology scores which was sustained over 12 weeks. Survival tended to be improved in peptide 90578-treated mice. Intravenous administration of pure soluble peptide 90578 without adjuvants is a promising approach to treat RA, with treatment starting at a time when ACPAs are already present. The results complement existing data on peptide "vaccination" of healthy animals, or on treatment using recombinant peptide expressing virus or complex biological compounds.


Assuntos
Artrite Reumatoide/imunologia , Artrite/imunologia , Artrite/metabolismo , Epitopos de Linfócito T/química , Frutose/química , Peptídeos/química , Animais , Antígenos de Diferenciação de Linfócitos B , Autoimunidade , Bovinos , Citrulina/química , Colágeno Tipo II/química , Antígenos de Histocompatibilidade Classe II , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos DBA , Peptídeos Cíclicos
4.
Eur Thyroid J ; 9(Suppl 1): 51-58, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33511085

RESUMO

INTRODUCTION: A novel long-term murine model for Graves' disease (GD) using repeated, long-term immunizations with recombinant adenovirus expressing the extracellular A-subunit of the human thyrotropin receptor (Ad-TSHR) was applied to evaluate the functional anti-TSHR-antibody (TSHR-Ab) profile. METHODS: BALB/c mice received 7 immunizations with either 1010 plaque-forming units of Ad-TSHR or control Ad-GFP. Naïve (nonimmuized native) mice were also studied. Three 3-weekly immunizations were followed by 4-weekly boosts until the 7th immunization. Blocking (TBAb) and stimulating (TSAb) TSHR-Ab were measured with bioassays. Assay cut-offs for TBAb/TSAb were at 34% inhibition and a specimen-to-reference ratio (SRR) of 140%. RESULTS: Nineteen (8 Ad-TSHR-, 4 Ad-GFP-immunized, and 7 native) mice were investigated. All native mice were negative for TSHR-binding inhibitory immunoglobulins (TBII) prior to immunization. Native and Ad-GFP mice were negative in weeks 17 and 27 for TBII and TBAb/TSAb. In native mice, the free thyroxine (fT4) levels (median [25th percentile; 75th percentile]) were in the upper normal range (1.2 ng/mL [1.1; 1.6]) prior to immunization, at weeks 17 (2.2 ng/mL [2.1; 2.4]) and 27 (1.4 ng/mL [1.1; 1.7]), respectively. In contrast, in Ad-TSHR-immunized mice, fT4 values were markedly increased at weeks 17 (4.4 ng/mL [3.9; 6]) and 27 (4.5 ng/mL [4.2; 6]) compared to those in Ad-GFP mice (2 ng/mL [1.8; 2.1] and 1.4 ng/mL [1.1; 1.6]), respectively (p = 0.0008, p = 0.001). In contrast, at week 17, in Ad-TSHR mice, the mean TBII, TBAb, and TSAb levels were 40 IU/L (40; 40); 62% inhibition (38; 69), and 116% SRR (97; 185), respectively; at week 27, they were 40 IU/L (39; 40); 65% inhibition (34; 80) and 95% SRR (63; 187), respectively. Three serum samples from Ad-TSHR mice (38%) demonstrated dual TBAb/TSAb positivity. CONCLUSIONS: TBAb/TSAb were highly prevalent in Ad-TSHR-immunized mice, thus confirming the successful establishment of a novel, long-term murine model for GD. All TBAb- and TSAb-positive Ad-TSHR-immunized mice were TBII-positive. Thus, the binding immunoassay did not differentiate between TSHR-Ab functionality.

5.
Thyroid ; 29(2): 258-267, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30618332

RESUMO

BACKGROUND: Cyclic peptides derived from some cylindrical loops of the leucine-rich repeat domain (LRD) of the thyrotropin receptor (TSHR) have been shown to treat disease manifestations in a mouse model of Graves' disease during a long-term protocol of four-weekly immunizations with adenovirus coding for the TSHR A-subunit (Ad-TSHR289). METHODS: In a follow-up study, two additional cyclic peptides were tested, which were shortened in order to obtain additional information on the minimally involved epitopes and to enable easier production conditions. In addition, a linear peptide was tested, which mimics parts of three loops of the native TSHR LRD structure, and is potentially able to block the discontinuous epitopes of anti-TSHR antibodies. RESULTS: The novel peptides markedly reduced thyroid size, serum thyroxine levels, retro-orbital fibrosis, and tachycardia in Ad-TSHR289-immunized mice. In immunologically naïve mice, administration of the peptides did not induce any immune response. CONCLUSIONS: In summary, novel cyclic peptides mitigate many clinical findings in a mouse model of established Graves' disease and orbitopathy, and may therefore provide an additional therapeutic option compared to existing drugs or interventions.


Assuntos
Oftalmopatia de Graves/imunologia , Órbita/fisiopatologia , Peptídeos Cíclicos/uso terapêutico , Adenoviridae , Animais , Modelos Animais de Doenças , Epitopos/química , Feminino , Fibrose , Oftalmopatia de Graves/terapia , Células HEK293 , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide , Camundongos , Camundongos Endogâmicos BALB C , Receptores da Tireotropina/genética , Taquicardia/genética , Tiroxina/sangue
6.
Clin Rev Allergy Immunol ; 52(2): 182-193, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27368808

RESUMO

Various approaches have been used to model human Graves' disease in mice, including transfected fibroblasts, and plasmid or adenoviral immunisations with the extracellular A subunit of the human thyrotropin receptor (TSHR). Some of these models were only observed for a short time period or were self-limiting. A long-term model for human Graves' disease was established in mice using continuing immunisations (4-weekly injections) with recombinant adenovirus expressing TSHR. Generation of TSHR binding cAMP-stimulatory antibodies, thyroid enlargement and alterations, elevated serum thyroxin levels, tachycardia and cardiac hypertrophy were maintained for at least 9 months in all Ad-TSHR-immunised mice. Here, we show that these mice suffer from orbitopathy, which was detected by serial orbital sectioning and histomorphometry. Attempts to treat established Graves' disease in preclinical mouse model studies have included small molecule allosteric antagonists and specific antagonist antibodies which were isolated from hypothyroid patients. In addition, novel peptides have been conceived which mimic the cylindrical loops of the TSHR leucine-rich repeat domain, in order to re-establish tolerance toward the antigen. Here, we show preliminary results that one set of these peptides improves or even cures all signs and symptoms of Graves' disease in mice after six consecutive monthly injections. First beneficial effects were observed 3-4 months after starting these therapies. In immunologically naïve mice, administration of the peptides did not induce any immune response.


Assuntos
Modelos Animais de Doenças , Doença de Graves/imunologia , Tolerância Imunológica/imunologia , Receptores da Tireotropina/imunologia , Animais , Doença de Graves/patologia , Imunização , Camundongos , Doenças Orbitárias/etiologia , Doenças Orbitárias/imunologia , Doenças Orbitárias/patologia
7.
Endocrinology ; 158(7): 2376-2390, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368444

RESUMO

A model for human Graves disease in mice was used to compare several treatment approaches. The mice received regular adenovirus (Ad) thyroid-stimulating hormone receptor (TSHR) A subunit immunizations (injections every 4 weeks). The generation of anti-TSHR antibodies, enlarged thyroid sizes (goiter), elevated serum thyroxine levels, retro-orbital fibrosis, and cardiac involvement (tachycardia and hypertrophy) were consistently observed over 9 months. Treatment of established disease in these mice using cyclic peptides that mimic one of the cylindrical loops of the TSHR leucine-rich repeat domain improved or cured all investigated parameters after six consecutive monthly injections. The first significant beneficial effects were observed 3 to 4 months after starting these therapies. In immunologically naïve mice, administration of any of the cyclic peptides did not induce any immune response. In contrast, monthly injections of the full antigenic TSHR A domain as fusion protein with immunoglobulin G crystallizable fragment induced clinical signs of allergy in Ad-TSHR-immunized mice and anti-TSHR antibodies in naïve control mice. In conclusion, cyclic peptides resolved many clinical findings in a mouse model of established Graves disease and orbitopathy. In contrast to blocking TSHR by allosteric modulation, the approach does not incur a direct receptor antagonism, which might offer a favorable side effect profile.


Assuntos
Doença de Graves/tratamento farmacológico , Oftalmopatia de Graves/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Receptores da Tireotropina/química , Animais , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Doença de Graves/sangue , Doença de Graves/complicações , Doença de Graves/patologia , Oftalmopatia de Graves/sangue , Oftalmopatia de Graves/patologia , Células HEK293 , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide/sangue , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/química
8.
J Am Heart Assoc ; 6(8)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751543

RESUMO

BACKGROUND: GPVI (Glycoprotein VI) is the essential platelet collagen receptor in atherothrombosis. Dimeric GPVI-Fc (Revacept) binds to GPVI binding sites on plaque collagen. As expected, it did not increase bleeding in clinical studies. GPVI-Fc is a potent inhibitor of atherosclerotic plaque-induced platelet aggregation at high shear flow, but its inhibition at low shear flow is limited. We sought to increase the platelet inhibitory potential by fusing GPVI-Fc to the ectonucleotidase CD39 (fusion protein GPVI-CD39), which inhibits local ADP accumulation at vascular plaques, and thus to create a lesion-directed dual antiplatelet therapy that is expected to lack systemic bleeding risks. METHODS AND RESULTS: GPVI-CD39 effectively stimulated local ADP degradation and, compared with GPVI-Fc alone, led to significantly increased inhibition of ADP-, collagen-, and human plaque-induced platelet aggregation in Multiplate aggregometry and plaque-induced platelet thrombus formation under arterial flow conditions. GPVI-CD39 did not increase bleeding time in an in vitro assay simulating primary hemostasis. In a mouse model of ferric chloride-induced arterial thrombosis, GPVI-CD39 effectively delayed vascular thrombosis but did not increase tail bleeding time in vivo. CONCLUSIONS: GPVI-CD39 is a novel approach to increase local antithrombotic activity at sites of atherosclerotic plaque rupture or injury. It enhances GPVI-Fc-mediated platelet inhibition and presents a potentially effective and safe molecule for the treatment of acute atherothrombotic events, with a favorable risk-benefit ratio.


Assuntos
Antígenos CD/farmacologia , Apirase/farmacologia , Lesões das Artérias Carótidas/tratamento farmacológico , Fibrinolíticos/farmacologia , Glicoproteínas/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/farmacologia , Trombose/prevenção & controle , Animais , Antígenos CD/toxicidade , Apirase/farmacocinética , Apirase/toxicidade , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/sangue , Lesões das Artérias Carótidas/induzido quimicamente , Lesões das Artérias Carótidas/patologia , Cloretos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Compostos Férricos , Fibrinolíticos/farmacocinética , Fibrinolíticos/toxicidade , Glicoproteínas/farmacocinética , Glicoproteínas/toxicidade , Hemorragia/induzido quimicamente , Humanos , Fragmentos Fc das Imunoglobulinas/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/toxicidade , Glicoproteínas da Membrana de Plaquetas/farmacocinética , Glicoproteínas da Membrana de Plaquetas/toxicidade , Proteínas Recombinantes de Fusão/farmacologia , Trombose/sangue , Trombose/induzido quimicamente , Trombose/patologia
9.
Heart Int ; 11(1): e10-e16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27924212

RESUMO

BACKGROUND: Thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) remains the only approved medication for acute ischemic stroke, but incurs significant bleeding risks. Therefore, approaches to combine lower doses of thrombolytic therapy with other effective drugs aim at improving efficacy and reducing bleeding rates. We examined the safety and therapeutic effects of various dosings of rtPA, either alone or combined with glycoprotein VI-Fc fusion protein (GPVI-Fc, Revacept) on experimental stroke in mice. METHODS AND RESULTS: The effect of filament-induced intracerebral thrombus formation and embolization was investigated after a one-hour occlusion of the middle cerebral artery. In accordance with previous studies, treatment with 10 mg/kg rtPA significantly improved functional outcome, cerebral infarct size and edema, but also resulted in markedly increased intracranial bleeding volumes. In contrast, low doses of rtPA (0.1 or 0.35 mg/kg body weight) did not change outcome parameters. However, addition of 1 mg/kg Revacept to 0.35 mg/kg rtPA led to improved reperfusion compared to rtPA alone. Moreover, these combined treatments resulted in improved grip strength, compared to the respective dose of rtPA alone. Infarct-surrounding edema improved after combined treatments, but not after respective single rtPA dosings. Intracranial bleeding volumes were below controls after all low-dose rtPA therapies, given either alone or combined with Revacept. CONCLUSIONS: In contrast to using the equally effective full dose of rtPA, intracranial bleeding was not increased by low-dose rtPA combined with Revacept. Therefore, addition of Revacept to low-dose rtPA does not incur safety risks, but improves efficacy of treatment.

10.
Endocrinology ; 156(4): 1577-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25562617

RESUMO

A transient model for human Graves' disease was successfully established in mice using up to 3 immunizations with recombinant adenovirus expressing the extracellular A-subunit of the human TSH receptor (TSHR) (Ad-TSHR). We studied extension of adenovirally induced TSHR A-subunit immunization in mice by using a novel protocol of long-term 3- and 4-weekly injections. Generation of TSHR binding stimulatory antibodies (capacity to stimulate cAMP activity in TSHR-expressing test cells), goiter, and histological thyroid alterations were maintained for at least 9 months in all Ad-TSHR-immunized mice. In response to injection of 10(10) plaque-forming units of Ad-TSHR, also elevated mean serum T4 levels were observed throughout the study. Moreover, cardiac organ involvement (tachycardia and hypertrophy) were consistently observed in these mice. Higher doses of Ad-TSHR (10(11) plaque-forming units) did not produce consistent elevation of T4 and were not associated with a clear increase in heart rate vs controls, probably because these high doses provoked an immune response-induced tachycardia on their own. In summary, a long-term model of Graves' disease induced by a relatively simple protocol of continuing monthly immunizations should allow to investigate long-term disease mechanisms and may possibly obviate the need for more complicated disease models. Moreover, the clinical outcome predictor of tachycardia and cardiac involvement was reliably detected in the model.


Assuntos
Cardiomegalia/etiologia , Doença de Graves/etiologia , Receptores da Tireotropina/imunologia , Taquicardia/etiologia , Adenoviridae , Animais , Autoanticorpos , Cardiomegalia/imunologia , Modelos Animais de Doenças , Feminino , Doença de Graves/imunologia , Imunização , Camundongos , Taquicardia/imunologia , Tiroxina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA