Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(4): e2205867, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36433832

RESUMO

Natural polymer-based sutures have attractive cytocompatibility and degradability in surgical operations. Herein, anionic cellulose nanofibrils (ACNF) and cationic guar gum (CGG) are employed to produce nontoxic CGG/ACNF composite filament with a unique core-shell structure via interfacial polyelectrolyte complexation (IPC) spinning. The comprehensive characterization and application performance of the resultant CGG/ACNF filament as a surgical suture are thoroughly investigated in comparison with silk and PGLA (90% glycolide and 10% l-lactide) sutures in vitro and in vivo, respectively. Results show that the CGG/ACNF filament with the typical core-shell structure and nervation pattern surface exhibits a high orientation index (0.74) and good mechanical properties. The tensile strength and knotting strength of CGG/ACNF suture prepared by twisting CGG/ACNF filaments increase by 69.5%, and CGG/ACNF suture has a similar friction coefficient to silk and PGLA sutures. Moreover, CGG/ACNF suture with antibiosis and cytocompatibility exhibits better growth promotion of cells than silk suture, similar to PGLA suture in vitro. In addition, the stitching experiment of mice with the CGG/ACNF suture further confirms better healing properties and less inflammation in vivo than silk and PGLA sutures do. Hence, the CGG/ACNF suture with a simple preparation method and excellent application properties is promising in surgical operations.


Assuntos
Celulose , Seda , Camundongos , Animais , Polieletrólitos , Suturas , Resistência à Tração , Cicatrização
2.
Biomacromolecules ; 24(3): 1400-1416, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802502

RESUMO

This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced 1H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes. The deposition behavior of the copolymer, studied by a quartz crystal microbalance with dissipation (QCM-D) analysis, revealed that the copolymer with a larger molecular weight (ALS-5) deposited more and generated more compact adlayer than the copolymer with a smaller molecular weight on a solid surface. Owing to its higher charge density, molecular weight, and extended coil-like structure, ALS-5 produced larger flocs with faster sedimentation in the colloidal systems, regardless of the extent of agitation and gravitational force. The results of this work provide a new approach to preparing a lignin-starch polymer, i.e., a sustainable biomacromolecule with excellent flocculation performance in colloidal systems.


Assuntos
Polímeros , Humanos , Alcanossulfonatos , Floculação , Lignina/química , Polímeros/química , Amido/química
3.
Biofouling ; 39(8): 879-895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965865

RESUMO

In this study, the effects of surface properties of membrane materials on microalgae cell adhesion and biofilm formation were investigated using Chlorella vulgaris and five different types of membrane materials under hydrodynamic conditions. The results suggest that the contact angle (hydrophobicity), surface free energy, and free energy of cohesion of membrane materials alone could not sufficiently elucidate the selectivity of microalgae cell adhesion and biofilm formation on membrane materials surfaces, and membrane surface roughness played a dominant role in controlling biofilm formation rate, under tested hydrodynamic conditions. A lower level of biofilm EPS production was generally associated with a larger amount of biofilm formation. The zeta potential of membrane materials could enhance initial microalgae cell adhesion and biofilm formation through salt bridging or charge neutralization mechanisms.


Assuntos
Chlorella vulgaris , Microalgas , Biofilmes , Adesão Celular , Propriedades de Superfície
4.
J Biomech Eng ; 145(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36826406

RESUMO

Respiratory diseases debilitate more than 250 million people around the world. Among available inhalation devices, the soft mist inhaler (SMI) is the most efficient at delivering drugs to ease respiratory disease symptoms. In this study, we analyzed the SMI performance in terms of the aerosol's velocity profiles, flow pattern, size distribution, and deposition by employing computational fluid dynamics (CFD) simulations. We modeled two different simplified mouth geometries, idealized mouth (IM), and standard mouth (SM). Three different locations (x = 0, x = 5, and x = 10 mm) for the SMI nozzle orifice were chosen along the mouth cavity centerlines, followed by two different SMI nozzle angles (10 deg and 20 deg) for IM geometry. A flowrate of 30 L/min was applied. The simulation results were evaluated against experimental data. It was found that the SMI could be simulated successfully with a level of error of less than 10%. The inhalation flowrate significantly impacted the aerosol's velocity profile and deposition efficiency on both the IM and SM walls. The lowest particle deposition on the mouth wall occurred when a fixed flowrate (30 L/min) was applied inside both geometries, and the SMI nozzle position moved forward to x = 10 mm from the IM and SM inlets. An increase in the SMI nozzle angle increased particle deposition and decreased the deposition fraction for particles with a diameter above 5 µm inside the IM.


Assuntos
Hidrodinâmica , Nebulizadores e Vaporizadores , Humanos , Aerossóis , Administração por Inalação , Boca , Simulação por Computador , Tamanho da Partícula , Desenho de Equipamento
5.
J Environ Manage ; 328: 116999, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516704

RESUMO

Lignin is an abundant phenolic polymer produced vastly in pulping processes that could be further valorized. In this work, anionic (AKLs) and cationic (CKLs) lignin-based polymers were made by polymerizing kraft lignin (KL) with acrylic acid (AA) or [2-(methacryloyloxy) ethyl] trimethyl-ammonium chloride (METAC), respectively. In the polymerization reactions, various molar ratios of AA or METAC to KL were applied to produce AKLs and CKLs with different characteristics. The produced AKLs and CKLs were used in single and dual systems to flocculate aluminum oxide in suspension. To assess the interaction of these lignin-based polymers with the aluminum oxide particles; the zeta potential, adsorption, and flocculation of the colloidal systems were evaluated comprehensively. The flocculation performance of the lignin-derived polymers was compared with that of the homopolymers of AA and METAC (PAA and PMETAC) and commercially used flocculants. In single polymer systems, among the anionic synthesized polymers and homopolymers, KL-A4 (an AKL) was the best flocculant for the aluminum oxide suspensions owing to its largest molecular weight (330 × 103 g/mol) and highest charge density (-4.2 mmol/g). Remarkably, when KL-A4 and KL-C4 (the CKL with the highest molecular weight and charge density) were used subsequently in a dual polymer system, a larger adsorbed mass and a more viscous adlayer were formed than those of single polymer systems on the surface of aluminum oxide particles. The synergy between KL-A4 and KL-C4 was even stronger than that between homopolymers, which led to more significant adsorption on the aluminum oxide surface and, consequently, more efficient flocculation, producing larger (22 µm) and stronger flocs, regardless of the agitation intensity used in the systems.


Assuntos
Lignina , Polímeros , Floculação , Peso Molecular
6.
J Environ Manage ; 325(Pt B): 116509, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308959

RESUMO

In the wastewater treatment plant of pulp and paper mills, biosludge dewatering is needed to reduce the sludge handling and disposal costs. It is usually facilitated by means of the addition of synthetic polymers. There is increasing interest in replacing synthetic polymers with biopolymers derived from low value by-products or industrial residuals to improve the environmental footprint of dewatering. In this study, lignin-based flocculants (LBF) were tested for their ability to improve the biosludge dewaterability based on Capillary Suction Time (CST) and dry cake solids achieved with a Crown Press. The results demonstrate that LBFs alone can significantly enhance dewatering with a decrease in CSTs from 72.7 ± 5.1 s (unconditioned biosludge) to 23.3 ± 0.4 s and an increase in dry cake solids after pressing from 7.1 ± 0.5% to 13.9 ± 1.3% with a relatively high dosage of 7.5% w/w. However, with dual conditioning a LBF and 0.1% w/w anionic polyacrylamide (APAM), the required dosage of LBF was reduced to 3% w/w to achieve a dry cake solids content of 13.8 ± 0.4%, the same as that achieved with Zetag8165, a commercial synthetic polymer. LBF addition lowered the particle surface charge, allowing the particles to agglomerate and enhancing for the biosludge dewaterability. The application of LBFs for sludge dewatering offers novel considerable promise for providing more sustainable approaches by optimizing the use of lignin from different extraction processes, applying various types of lignin modifications in combination with anionic polymers, and exploring different methods of disposal or utilization of the dewatered sludge.


Assuntos
Esgotos , Purificação da Água , Lignina , Água , Purificação da Água/métodos , Polímeros , Eliminação de Resíduos Líquidos/métodos
7.
J Nanobiotechnology ; 20(1): 312, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794620

RESUMO

BACKGROUND: Bacterial infection in wounds has become a major threat to human life and health. With the growth use of synthetic antibiotics and the elevated evolution of drug resistant bacteria in human body cells requires the development of novel wound curing strategies. Herein, a novel pH-responsive hydrogel (RPC/PB) was fabricated using poly(vinyl alcohol)-borax (PB) and natural antibiotic resveratrol grafted cellulose nanofibrils (RPC) for bacterial-infected wound management. RESULTS: In this hydrogel matrix, RPC conjugate was interpenetrated in the PB network to form a semi-interpenetrating network that exhibited robust mechanical properties (fracture strength of 149.6 kPa), high self-healing efficiency (> 90%), and excellent adhesion performance (tissue shear stress of 54.2 kPa). Interestingly, the induced RPC/PB hydrogel showed pH-responsive drug release behavior, the cumulative release amount of resveratrol in pH 5.4 was 2.33 times than that of pH 7.4, which was adapted well to the acidic wound microenvironment. Additionally, this RPC/PB hydrogel exhibited excellent biocompatibility and antioxidant effect. Moreover, in vitro and in vivo results revealed that such RPC/PB hydrogel had excellent antibacterial, skin tissue regeneration and wound closure capabilities. CONCLUSION: Therefore, the generated RPC/PB hydrogel could be an excellent wound dressing for bacteria-infected wound healing.


Assuntos
Celulose , Hidrogéis , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Bandagens , Celulose/farmacologia , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Resveratrol/farmacologia
8.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209240

RESUMO

Superhydrophobic coatings have drawn much attention in recent years for their widespread potential applications. However, there are challenges to find a simple and cost-effective approach to prepare superhydrophobic materials and coatings using natural polymer. Herein, we prepared a kraft lignin-based superhydrophobic powder via modifying kraft lignin through 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES) substitution reaction, and constructed superhydrophobic coatings by direct spraying the suspended PFDTES-Lignin powder on different substrates, including glass, wood, metal and paper. The prepared lignin-based coatings have excellent repellency to water, with a water contact angle of 164.7°, as well as good friction resistance, acid resistance, alkali resistance, salt resistance properties and quite good self-cleaning performance. After 30 cycles of sand friction or being stayed in 2 mol/L HCl, 0.25 mol/L NaOH and 2 mol/L NaCl solution for 30 min, the coatings still retain super hydrophobic capability, with contact angles higher than 150°. The superhydrophobic performance of PFDTES-Lignin coatings is mainly attributed to the constructed high surface roughness and the low surface energy afforded by modified lignin. This lignin-based polymer coating is low-cost, scalable, and has huge potential application in different fields, providing a simple way for the value-added utilization of kraft lignin.

9.
Langmuir ; 37(11): 3346-3358, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33667093

RESUMO

It is hypothesized that polymeric lignin surfactants have different affinities for stabilizing oil-water emulsions and that the emulsifying performance of these surfactants is highly affected by their adsorption performance at the oil-water interface. To validate this hypothesis, the adsorption performance of sulfethylated lignin (SEKL) surfactant at different oil-water interfaces was examined by assessing the contact angle, dynamic interfacial tension, and surface loading (Γ). Moreover, the interfacial adsorption kinetics of SEKL was comprehensively assessed in different oil-water systems to reveal the mechanisms of the SEKL adsorption at the interface. Also, the impacts of SEKL concentration and ionic strength on the performance of SEKL as an effective emulsifier for the emulsions were assessed. Furthermore, the droplet size and instability index of the emulsions were systematically correlated with the adsorption performance of SEKL at the interface of oil and water. For the first time, by implementing a modified Ward Toradai diffusion model, two distinct early stages of the adsorption of SEKL at the oil interface were identified. Interestingly, the second stage was the determining stage of adsorption with the diffusion-controlled mechanism when polymers reconfigured at the oil-water interface. Salt screening facilitated the clustering of SEKL upon charge repulsion elimination, which removed the energy barrier in the first stage of adsorption (ΔEp→0 = 0), but it introduced a steric barrier upon the reconfiguration of polymers at the oil interfaces in the second stage of adsorption. In addition to the kinetics of adsorption, satisfactory correlations were observed between surface pressure (Δγ = γ∞ - γ0), surface loading (Γ) of polymers, and contact angle at oil interfaces on one hand and the oil droplet size and emulsion stability on the other hand.

10.
Biomacromolecules ; 20(10): 3940-3951, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31498610

RESUMO

Cationic kraft lignin (CKL) macromolecules were produced via polymerizing kraft lignin (KL) with [2-(acryloyloxy)ethyl]trimethylammonium chloride (ATAC) or [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METAM). Despite slightly different charge densities (2.3-2.5 mmol/g) of CKL, lignin-METAM (KL-METAM) had a significantly larger molecular weight and radius of gyration. A correlation was observed between the structure of CKLs and their impacts on the surface hydrophilicity of kaolin particles. In interacting with kaolin particles, KL-METAM generated larger and stronger flocs with looser structures than did KL-ATAC. Compared to ATAC, METAM had one additional methyl substituent on its structure, which provided fundamental evidence on how a small group (i.e., a methyl group) on the structure of a cationic monomer can have a substantial influence on its polymerization with lignin and subsequently on the efficiency of the induced macromolecule as a flocculant in a kaolin suspension system.


Assuntos
Argila/química , Lignina/química , Cátions/química , Floculação , Peso Molecular , Polimerização , Polímeros/química , Compostos de Amônio Quaternário/química
11.
J Environ Manage ; 235: 414-422, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710851

RESUMO

In this work, fly ash (FA) and polydiallyldimethylammonium chloride (PDADMAC) were utilized to treat the spent liquor (SL) of thermomechanical pulping (TMP) process in an effort to remove its lignocelluloses. The incorporation of PDADMAC into the system reduced the dosage of FA required for achieving acceptable lignocellulose removals. The maximum lignocellulose removals of 81%, 78%, 56%, 53% and 97% were achieved for lignin, hemicellulose, COD, BOD, and turbidity via treating SL with 100 g/L of FA at 25 °C for 60 min and subsequently treating with 100 mg/L of PDADMAC at 25 °C for 30 min, respectively. Comparing the two-step processes, FA pretreatment with PDADMAC post treatment was more effective than the two step process of PDADMAC pretreatment and FA post treatment. In this case, the FA pretreatment generated metal-organic complexes, and the addition of PDADMAC facilitated the formation of large flocs that could be separated from the system readily. A one stage process of combined PDADMAC and FA was less effective than the two-stage process of FA and PDADMAC treatments in removing lignocelluloses from SL.


Assuntos
Cinza de Carvão , Lignina , Cátions , Polímeros
12.
Langmuir ; 34(50): 15293-15303, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30468388

RESUMO

Limited information is available on the interaction of anionically charged lignin and cationic particles, despite the promising use of anionic lignin as a coagulant and dispersant for suspension systems. The main objective of this study was to discover the fate of lignin on its interaction with rigid and soft surfaces. In this work, carboxymethylated lignin (CML) with two different charge densities were produced, and their adsorption performance on gold and poly(diallydimethylammonium chloride) (PDADMAC)-coated gold surfaces was comprehensively studied. The viscoelastic properties of adsorbed CML on the gold surface were investigated by means of quartz crystal microbalance with dissipation. A higher adsorbed amount and compact layer were observed for the adsorption of CML with a lower charge density of -1.16 meq/g (CML1). CML with a higher charge density (-2.92 meq/g), CML2, yielded a lower surface excess density of 2.31 × 10-6 mol/m2 and a higher occupied area per molecule (71.84 Å2) at the interface of water and gold sensor. Below and at equilibrium, CML2 generated a bulkier adsorption layer than did CML1 on the gold sensor and on the PDADMAC-coated sensor. Studies on the layer-by-layer (LBL) assembly of CML and PDADMAC revealed that CML1 adsorbed more greatly than CML2 on PDADMAC, and it generated a thicker but less viscoelastic layer. In this system, the greater loss to storage modulus ( G″/ G') value was achieved for CML2, indicating its looser structure in the LBL system. Studies on the LBL assembly of carboxymethylated xylan/PDADMAC and CML/PDADMAC provided concrete evidence for the fate of three-dimensional structure of CML on its adsorption performance.

13.
Molecules ; 23(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103485

RESUMO

The presence of dyes in wastewater effluents made from the textile industry is a major environmental problem due to their complex structure and poor biodegradability. In this study, a cationic lignin polymer was synthesized via the free radical polymerization of lignin with [2-(methacryloyloxy) ethyl] trimethyl ammonium chloride (METAC) and used to remove anionic azo-dyes (reactive black 5, RB5, and reactive orange 16, RO16) from simulated wastewater. The effects of pH, salt, and concentration of dyes, as well as the charge density and molecular weight of lignin-METAC polymer on dye removal were examined. Results demonstrated that lignin-METAC was an effective flocculant for the removal of dye via charge neutralization and bridging mechanisms. The dye removal efficiency of lignin-METAC polymer was independent of pH. The dosage of the lignin polymer required for reaching the maximum removal had a linear relationship with the dye concentration. The presence of inorganic salts including NaCl, NaNO3, and Na2SO4 had a marginal effect on the dye removal. Under the optimized conditions, greater than 98% of RB5 and 94% of RO16 were removed at lignin-METAC concentrations of 120 mg/L and 105 mg/L in the dye solutions, respectively.


Assuntos
Cátions , Lignina/química , Polímeros/química , Águas Residuárias/química , Compostos Azo/química , Floculação , Concentração de Íons de Hidrogênio , Peso Molecular , Poluentes Químicos da Água , Purificação da Água/métodos
14.
Molecules ; 23(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642602

RESUMO

Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.


Assuntos
Lignina/química , Adsorção , Biomassa , Floculação , Solubilidade
15.
J Environ Manage ; 200: 275-282, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28582750

RESUMO

Currently, the dissolved lignocelluloses in the spent liquor (SL) of a thermomechanical pulping process are treated in wastewater treatment systems and thus they are wasted. In this work, polydiallyldimethylammonium chloride (PDADMAC), with different molecular weights, was used for flocculating lignocelluloses of SL and thus isolating them from SL. Results showed that the maximum removals were 38% via treating SL with 100 mg/L of PDADMAC (with 1045 kg/mol molecular weight) at 25 °C for 30 min. The focused beam reflectance measurement of the flocculation process revealed that the chord length of the flocs with the maximum square weighted counts was increased from 70 to 100 µm and also their maximum square weighted counts was increased from 5 to 25 µm2/s. The flocs contained 60.71-74.41 wt% PDADMAC, the balance of lignocelluloses and the heating value of 24-25 MJ/kg. The high molecular PDADMAC generated flocs with more organics and a higher heating value.


Assuntos
Águas Residuárias , Floculação , Peso Molecular
16.
J Environ Manage ; 136: 62-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24565877

RESUMO

Hemicelluloses and lignin present in the spent liquor (SL) of neutral sulfite semichemical (NSSC) pulping process can potentially be converted into value-added products such as furfural, hydroxymethylfurfural, levulinic acid, phenols and adhesives. However, the direct conversion of hemicelluloses and lignin of SL into value-added products is uneconomical due to the dilute nature of the SL. To have a feasible downstream process for utilizing lignocelluloses of SL, the lignocelluloses should initially be separated from the SL. In this study, an adsorption process (via applying activated carbon) was considered for isolating the dissolved lignin and hemicelluloses from the SL of an NSSC pulping process. Under the optimal conditions of pH, SL/AC weight ratio, time and temperature of 5.7, 30, 360 min and 30 °C, the maximum lignin and hemicellulose adsorptions were 0.33 and 0.25 g/g on AC. The chemical oxygen demand (COD) and turbidity of the SL were decreased by 11% and 39%, respectively, as a result of lignocellulose adsorption on AC. Also, the incineration behavior of the SL-treated AC was studied with a thermo-gravimetric analysis (TGA).


Assuntos
Lignina/química , Papel , Eliminação de Resíduos Líquidos/métodos , Adsorção , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal/química , Furaldeído/análogos & derivados , Furaldeído/química , Ácidos Levulínicos/química , Polissacarídeos/química , Temperatura , Termogravimetria , Madeira/química
17.
Environ Technol ; 35(17-20): 2597-603, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25145216

RESUMO

Wood chips are pretreated with steam prior to refining in the thermomechanical pulping process. The steam treatment dissolves part of lignin of wood chips in the spent liquor (SL) of this process, and subsequently the SL is sent to the wastewater system of the process. However, the lignin of SL can be used in the production of value-added chemicals, but it should first be separated from the SL in order to have a feasible downstream process. In this study, activated carbon (AC) was considered as an adsorbent to isolate lignin from SL. The results showed that the maximum adsorption of lignin on AC was 166 mg/g under the optimal conditions of pH 5.2, 30 degrees C and 3 h treatment. Furthermore, the separation of lignin from SL was improved from 45% to 60% by having a two-stage adsorption process at pH 5.2, which also reduced the turbidity and chemical oxygen demand of SL by 39% and 32%, respectively.


Assuntos
Lignina/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Adsorção , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal/química , Resíduos Industriais , Lignina/química , Águas Residuárias/química
18.
Biotechnol Adv ; 70: 108281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37956796

RESUMO

In their pristine state, starch and lignin are abundant and inexpensive natural polymers frequently considered green alternatives to oil-based and synthetic polymers. Despite their availability and owing to their physicochemical properties; starch and lignin are not often utilized in their pristine forms for high-performance applications. Generally, chemical and physical modifications transform them into starch- and lignin-based materials with broadened properties and functionality. In the last decade, the combination of starch and lignin for producing reinforced materials has gained significant attention. The reinforcing of starch matrices with lignin has received primary focus because of the enhanced water sensitivity, UV protection, and mechanical and thermal resistance that lignin introduces to starch-based materials. This review paper aims to assess starch-lignin materials' production and characterization technologies, highlighting their physicochemical properties, outcomes, challenges, and opportunities. First, this paper describes the current status, sources, and chemical modifications of lignin and starch. Next, the discussion is oriented toward starch-lignin materials and their production approaches, such as blends, composites, plasticized/crosslinked films, and coupled polymers. Special attention is given to the characterization methods of starch-lignin materials, focusing on their advantages, disadvantages, and expected outcomes. Finally, the challenges, opportunities, and future perspectives in developing starch-lignin materials, such as adhesives, coatings, films, and controlled delivery systems, are discussed.


Assuntos
Lignina , Amido , Lignina/química , Amido/química , Água , Polímeros
19.
Ann Biomed Eng ; 52(5): 1195-1212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509413

RESUMO

Delivery of drugs to the lungs is commonly achieved using nasal and/or oral breathing-assisted techniques. The route of inhalation can substantially change the fate of inhaled droplets. The Respimat® Soft Mist™ Inhaler (SMI) is a commercially available efficient inhaler with 40-60% effectiveness. In the present study, we used computational fluid dynamics (CFD) with a custom setup to investigate the effect of a combined oral/nasal inhalation route on the SMI's regional droplet deposition, size distribution, and flow field. Our setup used a modified induction port (MIP) to mimic nasal inhalation inside the human respiratory tract. Six different oral/nasal flow rate ratios inside the MIP were applied (total flow rate of 30 l/min). An overall good agreement was achieved between simulation outcomes and in vitro results. Our results confirmed that the combined inhalation route affects the flow field, altering the MIP's droplet deposition and size distribution. The lowest depositional loss, mainly in the mouth area, was observed at oral/nasal flow rate ratios of O/N = 1 and O/N = 2 with 3% and 7.7% values, respectively. Droplets with a 2-5 µm diameter range showed the highest droplet mass inside the MIP at all combined flow rates. We observed less intense vortexes followed by a lower level of turbulent kinetic energy at the oral/nasal ratio of 1. Increasing the relative humidity (RH) at oral/nasal flow rate ratios of 0.07, 1, and 14 led to an increase in droplet deposition at the outlet of the MIP.


Assuntos
Laringe , Nebulizadores e Vaporizadores , Humanos , Aerossóis , Administração por Inalação , Pulmão , Tamanho da Partícula , Desenho de Equipamento
20.
Environ Pollut ; 343: 123142, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142806

RESUMO

The long-term existence of peptone can breed a large number of bacteria and cause the eutrophication of municipal wastewater. Thus, removing peptone in the wastewater is a major challenge facing the current industry. This study used cationic and anionic lignin polymers, i.e., kraft lignin-[2-(methacryloyloxy)ethyl] trimethylammonium methyl sulfate (cationic lignin polymer, CLP) and kraft lignin-acrylic acid (anionic lignin polymer, ALP), as flocculants to eliminate peptone from model wastewater in the single and dual component systems. The affinity of peptone for ALP or CLP was assessed by quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, contact angle, and vertical scan analyzer. Results illustrated that the adsorption effect of CLP for peptone was significantly superior to that of ALP owing to the stronger vital interaction between cationic polymer and peptone molecules. Based on destabilization and sedimentation analyses, introducing CLP triggered the preliminary flocculation of peptone via bridging action, as indicated by a considerable increment in the destabilization index (from 1.1 to 10.6). Moreover, peptone adsorbed more on the CLP coated surface than on the ALP coated one (14.8 vs 5.4 mg/m2), while ALP facilitated its further adsorption in the dual polymer system. This is because CLP adsorbed a part of peptone molecules on its surface. Then, ALP entrapped the unattached peptone onto the CLP coated surface through electrostatic interaction. Compared with the single polymer system, mixing ALP and CLP subsequently into the peptone solution in the dual system generated larger size aggregates (mean diameter of 6.1 µm) and made the system destabilization (Turbiscan stability index up to 58.1), thereby yielding more flocculation and sedimentation. Finally, peptone was removed successfully from simulated wastewater with a turbidity removal efficiency of 92.5%. These findings confirmed that the dual-component system containing two lignin-derived polymers with opposite charges could be viable for treating peptone wastewater.


Assuntos
Peptonas , Águas Residuárias , Lignina/química , Polímeros/química , Adsorção , Floculação , Cátions/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA