Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39442636

RESUMO

Infants born very preterm (below 28 weeks of gestation) are at high risk of developing neurodevelopmental disorders, such as intellectual deficiency, autism spectrum disorders, and attention deficit. Preterm birth often occurs in the context of perinatal systemic inflammation due to chorioamnionitis and postnatal sepsis. In addition, C-section is often performed for very preterm neonates to avoid hypoxia during a vaginal delivery. We have developed and characterized a mouse model based on intraperitoneal injections of IL-1ß between postnatal days one and five to reproduce perinatal systemic inflammation. This model replicates several neuropathological, brain imaging, and behavioral deficits observed in preterm infants. We hypothesized that C-sections could synergize with systemic inflammation to induce more severe brain abnormalities. We observed that C-sections significantly exacerbated the deleterious effects of IL-1ß on reduced gut microbial diversity, increased levels of circulating peptidoglycans, abnormal microglia/macrophage reactivity, impaired myelination, and reduced functional connectivity in the brain relative to vaginal delivery plus intraperitoneal saline. These data demonstrate the deleterious synergistic effects of C-section and neonatal systemic inflammation on brain maldevelopment and malfunction, two conditions frequently observed in very preterm infants, who are at high risk of developing neurodevelopmental disorders.

2.
J Cereb Blood Flow Metab ; 44(9): 1577-1590, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38340789

RESUMO

Preterm birth is associated with cerebrovascular development disruption and can induce white matter injuries (WMI). Transfontanellar ultrasound Doppler is the most widely used clinical imaging technique to monitor neonatal cerebral vascularisation and haemodynamics based on vascular indexes such as the resistivity index (RI); however, it has poor predictive value for brain damage. Indeed, these RI measurements are currently limited to large vessels, leading to a very limited probing of the brain's vascularisation, which may hinder prognosis. Here we show that ultrafast Doppler imaging (UfD) enables simultaneous quantification, in the whole field of view, of the local RI and vessel diameter, even in small vessels. Combining both pieces of information, we defined two new comprehensive resistivity parameters of the vascular trees. First, we showed that our technique is more sensitive in the early characterisation of the RI modifications between term and preterm neonates and for the first time we could show that the RI depends both on the vessel diameter and vascular territory. We then showed that our parameters can be used for early prediction of WMI. Our results demonstrate the potential of UfD to provide new biomarkers and pave the way for continuous monitoring of neonatal brain resistivity.


Assuntos
Substância Branca , Humanos , Recém-Nascido , Substância Branca/diagnóstico por imagem , Feminino , Masculino , Resistência Vascular/fisiologia , Recém-Nascido Prematuro , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Diagnóstico Precoce , Ultrassonografia Doppler Transcraniana/métodos , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/fisiopatologia
3.
Sci Rep ; 14(1): 11827, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782968

RESUMO

Cerebral white matter damage (WMD) is the most frequent brain lesion observed in infants surviving premature birth. Qualitative B-mode cranial ultrasound (cUS) is widely used to assess brain integrity at bedside. Its limitations include lower discriminatory power to predict long-term outcomes compared to magnetic resonance imaging (MRI). Shear wave elastography (SWE), a promising ultrasound imaging modality, might improve this limitation by detecting quantitative differences in tissue stiffness. The study enrolled 90 neonates (52% female, mean gestational age = 30.1 ± 4.5 weeks), including 78 preterm and 12 term controls. Preterm neonates underwent B-mode and SWE assessments in frontal white matter (WM), parietal WM, and thalami on day of life (DOL) 3, DOL8, DOL21, 40 weeks, and MRI at term equivalent age (TEA). Term infants were assessed on DOL3 only. Our data revealed that brain stiffness increased with gestational age in preterm infants but remained lower at TEA compared to the control group. In the frontal WM, elasticity values were lower in preterm infants with WMD detected on B-mode or MRI at TEA and show a good predictive value at DOL3. Thus, brain stiffness measurement using SWE could be a useful screening method for early identification of preterm infants at high WMD risk.Registration numbers: EudraCT number ID-RCB: 2012-A01530-43, ClinicalTrial.gov number NCT02042716.


Assuntos
Técnicas de Imagem por Elasticidade , Recém-Nascido Prematuro , Substância Branca , Humanos , Técnicas de Imagem por Elasticidade/métodos , Feminino , Recém-Nascido , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Idade Gestacional
4.
Nat Commun ; 12(1): 1080, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597538

RESUMO

Clinicians have long been interested in functional brain monitoring, as reversible functional losses often precedes observable irreversible structural insults. By characterizing neonatal functional cerebral networks, resting-state functional connectivity is envisioned to provide early markers of cognitive impairments. Here we present a pioneering bedside deep brain resting-state functional connectivity imaging at 250-µm resolution on human neonates using functional ultrasound. Signal correlations between cerebral regions unveil interhemispheric connectivity in very preterm newborns. Furthermore, fine-grain correlations between homologous pixels are consistent with white/grey matter organization. Finally, dynamic resting-state connectivity reveals a significant occurrence decrease of thalamo-cortical networks for very preterm neonates as compared to control term newborns. The same method also shows abnormal patterns in a congenital seizure disorder case compared with the control group. These results pave the way to infants' brain continuous monitoring and may enable the identification of abnormal brain development at the bedside.


Assuntos
Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Algoritmos , Encéfalo/fisiopatologia , Córtex Cerebral/fisiopatologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Neurológicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Ultrassonografia Doppler/métodos , Substância Branca/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA