Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Infect Immun ; 91(2): e0050322, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36695576

RESUMO

ß-Lactams are the most widely prescribed antibiotics used for the control and treatment of bacterial infections. The direct effect of ß-lactams on bacteria is well studied worldwide. In the context of infections and as a consequence of their direct activity against the pathogen, ß-lactams also regulate antibacterial immune responses. This knowledge has led to the theorem that the effectiveness of ß-lactam treatment results from the synergy between the drug and the immune response. Key players in this immune response, with an essential role in the clearance of live and dead bacteria, are the myeloid cells. In this review, we summarize the data that shed light on how ß-lactams interact with myeloid cells during bacterial infection treatment.


Assuntos
Infecções Bacterianas , beta-Lactamas , Humanos , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Bactérias , Imunidade Inata
2.
PLoS Biol ; 17(3): e3000169, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30822302

RESUMO

CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)-dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides-namely monosialoganglioside GM3 and disialoganglioside GD3-as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells.


Assuntos
Ceramidas/metabolismo , Gangliosídeos/metabolismo , Células T Matadoras Naturais/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Antígenos CD1d/metabolismo , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Gangliosídeo G(M3)/metabolismo , Glicoesfingolipídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
3.
PLoS Pathog ; 14(10): e1007360, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30372491

RESUMO

Secondary bacterial infections contribute to the excess morbidity and mortality of influenza A virus (IAV) infection. Disruption of lung integrity and impaired antibacterial immunity during IAV infection participate in colonization and dissemination of the bacteria out of the lungs. One key feature of IAV infection is the profound alteration of lung myeloid cells, characterized by the recruitment of deleterious inflammatory monocytes. We herein report that IAV infection causes a transient decrease of lung conventional dendritic cells (cDCs) (both cDC1 and cDC2) peaking at day 7 post-infection. While triggering emergency monopoiesis, IAV transiently altered the differentiation of cDCs in the bone marrow, the cDC1-biaised pre-DCs being particularly affected. The impaired cDC differentiation during IAV infection was independent of type I interferons (IFNs), IFN-γ, TNFα and IL-6 and was not due to an intrinsic dysfunction of cDC precursors. The alteration of cDC differentiation was associated with a drop of local and systemic production of Fms-like tyrosine kinase 3 ligand (Flt3-L), a critical cDC differentiation factor. Overexpression of Flt3-L during IAV infection boosted the cDC progenitors' production in the BM, replenished cDCs in the lungs, decreased inflammatory monocytes' infiltration and lowered lung damages. This was associated with partial protection against secondary pneumococcal infection, as reflected by reduced bacterial dissemination and prolonged survival. These findings highlight the impact of distal viral infection on cDC genesis in the BM and suggest that Flt3-L may have potential applications in the control of secondary infections.


Assuntos
Células Dendríticas/imunologia , Vírus da Influenza A/imunologia , Pulmão/imunologia , Proteínas de Membrana/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções Pneumocócicas/imunologia , Superinfecção/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/microbiologia , Células Dendríticas/virologia , Pulmão/microbiologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/virologia , Receptor de Interferon alfa e beta/fisiologia , Streptococcus pneumoniae/imunologia
4.
Crit Care ; 24(1): 611, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076936

RESUMO

BACKGROUND: Gut dysbiosis due to the adverse effects of antibiotics affects outcomes of lung infection. Previous murine models relied on significant depletion of both gut and lung microbiota, rendering the analysis of immune gut-lung cross-talk difficult. Here, we study the effects of antibiotic-induced gut dysbiosis without lung dysbiosis on lung immunity and the consequences on acute P. aeruginosa lung infection. METHODS: C57BL6 mice received 7 days oral vancomycin-colistin, followed by normal regimen or fecal microbial transplant or Fms-related tyrosine kinase 3 ligand (Flt3-Ligand) over 2 days, and then intra-nasal P. aeruginosa strain PAO1. Gut and lung microbiota were studied by next-generation sequencing, and lung infection outcomes were studied at 24 h. Effects of vancomycin-colistin on underlying immunity and bone marrow progenitors were studied in uninfected mice by flow cytometry in the lung, spleen, and bone marrow. RESULTS: Vancomycin-colistin administration induces widespread cellular immunosuppression in both the lung and spleen, decreases circulating hematopoietic cytokine Flt3-Ligand, and depresses dendritic cell bone marrow progenitors leading to worsening of P. aeruginosa lung infection outcomes (bacterial loads, lung injury, and survival). Reversal of these effects by fecal microbial transplant shows that these alterations are related to gut dysbiosis. Recombinant Flt3-Ligand reverses the effects of antibiotics on subsequent lung infection. CONCLUSIONS: These results show that gut dysbiosis strongly impairs monocyte/dendritic progenitors and lung immunity, worsening outcomes of P. aeruginosa lung infection. Treatment with a fecal microbial transplant or immune stimulation by Flt3-Ligand both restore lung cellular responses to and outcomes of P. aeruginosa following antibiotic-induced gut dysbiosis.


Assuntos
Antibacterianos/efeitos adversos , Disbiose/complicações , Terapia de Imunossupressão/efeitos adversos , Pneumonia/etiologia , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Disbiose/etiologia , Disbiose/fisiopatologia , Terapia de Imunossupressão/métodos , Pulmão/microbiologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Pneumonia/fisiopatologia , Pseudomonas aeruginosa/efeitos dos fármacos , Vancomicina/efeitos adversos , Vancomicina/farmacologia
5.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661933

RESUMO

Severe bacterial (pneumococcal) infections are commonly associated with influenza and are significant contributors to the excess morbidity and mortality of influenza. Disruption of lung tissue integrity during influenza participates in bacterial pulmonary colonization and dissemination out of the lungs. Interleukin-22 (IL-22) has gained considerable interest in anti-inflammatory and anti-infection immunotherapy over the last decade. In the current study, we investigated the effect of exogenous IL-22 delivery on the outcome of pneumococcal superinfection postinfluenza. Our data show that exogenous treatment of influenza virus-infected mice with recombinant IL-22 reduces bacterial dissemination out of the lungs but is without effect on pulmonary bacterial burden. Reduced systemic bacterial dissemination was linked to reinforced pulmonary barrier functions, as revealed by total protein measurement in the bronchoalveolar fluids, intratracheal fluorescein isothiocyanate-dextran tracking, and histological approaches. We describe an IL-22-specific gene signature in the lung tissue of influenza A virus (IAV)-infected (and naive) mice that might explain the observed effects. Indeed, exogenous IL-22 modulates the gene expression profile in a way that suggests reinforcement of tissue integrity. Our results open the way to alternative approaches for limiting postinfluenza bacterial superinfection, particularly, systemic bacterial invasion.


Assuntos
Interleucinas/uso terapêutico , Pulmão/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções Pneumocócicas/imunologia , Superinfecção/imunologia , Animais , Humanos , Imunoterapia , Fígado/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Transcriptoma , Interleucina 22
6.
J Immunol ; 197(10): 3894-3904, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798147

RESUMO

Recently, the role of B cells in atherosclerosis has gained more attention but studies have mainly focused on B1 and follicular B cell subsets. Therefore, the contribution of marginal zone (MZ) B cells in experimental atherosclerosis remains elusive. In the current study, we examined the MZ B cell compartment in atherosclerotic apoE-deficient (apoE-/-) mice and found that hypercholesterolemia in these mice was associated with an increased number and percentage of MZ B cells. This aberrant accumulation of MZ B cells was not associated with alterations in their development or increased proliferation but was due to decreased apoptotic cell death. This decrease in MZ B cell death in apoE-/- mice was associated with the reduced capacity of invariant NKT (iNKT) cells to produce IFN-γ and IL-4 after activation. Lowering cholesterol plasma levels with ezetimibe in apoE-/- mice reversed iNKT function and MZ B cell accumulation. To elucidate the mechanism whereby iNKT cells control MZ B cell accumulation in apoE-/- mice, we performed an adoptive transfer of iNKT cells and found that only wild-type iNKT cells but not IFN-γ-/- iNKT cells reversed MZ B cell accumulation in apoE-/- recipient mice. Our findings reveal that lipid changes associated with atherosclerotic disease induce decreased production of IFN-γ by iNKT, which in turn leads to aberrant accumulation of MZ B cells. This study further extends the importance of iNKT cells in regulating MZ B cell compartment.


Assuntos
Apolipoproteínas E/deficiência , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Hipercolesterolemia/imunologia , Tecido Linfoide/citologia , Células T Matadoras Naturais/imunologia , Transferência Adotiva , Animais , Apolipoproteínas E/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Ezetimiba/administração & dosagem , Ezetimiba/uso terapêutico , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Interferon gama/biossíntese , Interferon gama/deficiência , Interferon gama/imunologia , Interleucina-4/biossíntese , Interleucina-4/imunologia , Tecido Linfoide/anatomia & histologia , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo
7.
J Immunol ; 193(2): 961-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24913977

RESUMO

Immunotherapy aiming at enhancing innate and acquired host immunity is a promising approach for cancer treatment. The invariant NKT (iNKT) cell ligand α-galactosylceramide (α-GalCer) holds great promise in cancer therapy, although several concerns limit its use in clinics, including the uncontrolled response it promotes when delivered in a nonvectorized form. Therefore, development of delivery systems to in vivo target immune cells might be a valuable option to optimize iNKT cell-based antitumor responses. Using dendritic cell (DC)-depleted mice, DC transfer experiments, and in vivo active cell targeting, we show that presentation of α-GalCer by DCs not only triggers optimal primary iNKT cell stimulation, but also maintains secondary iNKT cell activation after challenge. Furthermore, targeted delivery of α-GalCer to CD8α(+) DCs, by means of anti-DEC205 decorated nanoparticles, enhances iNKT cell-based transactivation of NK cells, DCs, and γδ T cells. We report that codelivery of α-GalCer and protein Ag to CD8α(+) DCs triggers optimal Ag-specific Ab and cytotoxic CD8(+) T cell responses. Finally, we show that targeting nanoparticles containing α-GalCer and Ag to CD8α(+) DCs promotes potent antitumor responses, both in prophylactic and in therapeutic settings. Our data may have important implications in tumor immunotherapy and vaccine development.


Assuntos
Antígenos CD8/imunologia , Células Dendríticas/imunologia , Galactosilceramidas/imunologia , Células T Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Animais , Anticorpos/química , Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Antígenos CD/imunologia , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Galactosilceramidas/administração & dosagem , Galactosilceramidas/química , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Nanopartículas/administração & dosagem , Nanopartículas/química , Células T Matadoras Naturais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Superfície Celular/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Carga Tumoral/imunologia
8.
Infect Immun ; 83(5): 2053-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754199

RESUMO

Bacterial superantigens (SAgs) are immunostimulatory toxins that induce acute diseases mainly through the massive release of inflammatory cytokines. Yersinia pseudotuberculosis is the only Gram-negative bacterium known to produce a SAg (Y. pseudotuberculosis-derived mitogen [YPM]). This SAg binds major histocompatibility complex class II molecules on antigen-presenting cells and T cell receptors (TcR) bearing the variable region Vß3, Vß9, Vß13.1, or Vß13.2 (in humans) and Vß7 or Vß8 (in mice). We have previously shown that YPM exacerbates the virulence of Y. pseudotuberculosis in mice. With a view to understanding the mechanism of YPM's toxicity, we compared the immune response in BALB/c mice infected with a YPM-producing Y. pseudotuberculosis or the corresponding isogenic, SAg-deficient mutant. Five days after infection, we observed strong CD4(+) Vß7(+) T cell expansion and marked interleukin-4 (IL-4) production in mice inoculated with SAg-producing Y. pseudotuberculosis. These phenomena were correlated with the activation of ypm gene transcription in liver and spleen. A transcriptomic analysis revealed that the presence of YPM also increased expression of granzyme and perforin genes in the host's liver and spleen. This expression was attributed to a CD4(+) T cell subset, rather than to natural killer T (NKT) cells that display a TcR with a Vß region that is potentially recognized by YPM. Increased production of cytotoxic molecules was correlated with hepatotoxicity, as demonstrated by an increase in plasma alanine aminotransferase activity. Our results demonstrate that YPM activates a potentially hepatotoxic CD4(+) T cell population.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Granzimas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Superantígenos/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Perfilação da Expressão Gênica , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos BALB C , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/microbiologia
9.
Eur J Immunol ; 44(7): 2111-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687687

RESUMO

The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in APCs was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-galactosylceramide. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1ß and IL-18 production by myeloid cells in response to α-galactosylceramide, by acting on the NLRP3 inflammasome priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation.


Assuntos
Proteínas de Transporte/fisiologia , Inflamação/etiologia , Células T Matadoras Naturais/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células Apresentadoras de Antígenos/fisiologia , Citocinas/biossíntese , Galactosilceramidas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
10.
J Infect Dis ; 210(3): 493-503, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24577508

RESUMO

Mucosal sites are continuously exposed to pathogenic microorganisms and are therefore equipped to control respiratory infections. Type 3 innate lymphoid cells (ILC3) are key players in antimicrobial defense in intestinal mucosa, through interleukin 17 and interleukin 22 (IL-22) production. The present study aimed at analyzing the distribution and function of ILC3 in the respiratory tract. We first observed that lung mucosa harbors a discrete population of ILC3 expressing CD127, CD90, CCR6, and the transcriptional factor RORγt. In addition, lung ILC3 were identified as a major source of IL-22 in response to interleukin 23 stimulation. During Streptococcus pneumoniae infection, ILC3 rapidly accumulated in the lung tissue to produce IL-22. In response to S. pneumoniae, dendritic cells and MyD88, an important adaptor of innate immunity, play critical functions in IL-22 production by ILC3. Finally, administration of the Toll-like receptor 5 agonist flagellin during S. pneumoniae challenge exacerbated IL-22 production by ILC3, a process that protects against lethal infection. In conclusion, boosting lung ILC3 might represent an interesting strategy to fight respiratory bacterial infections.


Assuntos
Interleucinas/metabolismo , Pulmão/metabolismo , Linfócitos/classificação , Linfócitos/fisiologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Animais , Feminino , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucinas/genética , Ativação Linfocitária , Camundongos , Camundongos Knockout , Streptococcus pneumoniae , Interleucina 22
11.
J Virol ; 87(12): 6911-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23596287

RESUMO

Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αß and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.


Assuntos
Infecções Bacterianas/imunologia , Coinfecção/imunologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Interleucinas/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia/imunologia , Animais , Infecções Bacterianas/microbiologia , Coinfecção/microbiologia , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Pneumonia/patologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/patogenicidade , Interleucina 22
12.
J Leukoc Biol ; 115(3): 463-475, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37837383

RESUMO

Pneumonia caused by Streptococcus pneumoniae is a leading cause of death worldwide. A growing body of evidence indicates that the successful treatment of bacterial infections results from synergy between antibiotic-mediated direct antibacterial activity and the host's immune defenses. However, the mechanisms underlying the protective immune responses induced by amoxicillin, a ß-lactam antibiotic used as the first-line treatment of S. pneumoniae infections, have not been characterized. A better understanding of amoxicillin's effects on host-pathogen interactions might facilitate the development of other treatment options. Given the crucial role of neutrophils in the control of S. pneumoniae infections, we decided to investigate amoxicillin's impact on neutrophil development in a mouse model of pneumococcal superinfection. A single therapeutic dose of amoxicillin almost completely eradicated the bacteria and prevented local and systemic inflammatory responses. Interestingly, in this context, amoxicillin treatment did not impair the emergency granulopoiesis triggered in the bone marrow by S. pneumoniae. Importantly, treatment of pneumonia with amoxicillin was associated with a greater mature neutrophil count in the bone marrow; these neutrophils had specific transcriptomic and proteomic profiles. Furthermore, amoxicillin-conditioned, mature neutrophils in the bone marrow had a less activated phenotype and might be rapidly mobilized in peripheral tissues in response to systemic inflammation. Thus, by revealing a novel effect of amoxicillin on the development and functions of bone marrow neutrophils during S. pneumoniae pneumonia, our findings provide new insights into the impact of amoxicillin treatment on host immune responses.


Assuntos
Infecções Pneumocócicas , Pneumonia Pneumocócica , Camundongos , Animais , Pneumonia Pneumocócica/tratamento farmacológico , Neutrófilos , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Medula Óssea , Pulmão , Proteômica , Streptococcus pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia
13.
J Biol Chem ; 287(12): 8816-29, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22294696

RESUMO

Invariant natural killer T (iNKT) cells are non-conventional lipid-reactive αß T lymphocytes that play a key role in host responses during viral infections, in particular through the swift production of cytokines. Their beneficial role during experimental influenza A virus (IAV) infection has recently been proposed, although the mechanisms involved remain elusive. Here we show that during in vivo IAV infection, mouse pulmonary iNKT cells produce IFN-γ and IL-22, a Th17-related cytokine critical in mucosal immunity. Although permissive to viral replication, IL-22 production by iNKT cells is not due to IAV infection per se of these cells but is indirectly mediated by IAV-infected dendritic cells (DCs). We show that activation of the viral RNA sensors TLR7 and RIG-I in DCs is important for triggering IL-22 secretion by iNKT cells, whereas the NOD-like receptors NOD2 and NLRP3 are dispensable. Invariant NKT cells respond to IL-1ß and IL-23 provided by infected DCs independently of the CD1d molecule to release IL-22. In vitro, IL-22 protects IAV-infected airway epithelial cells against mortality but has no role on viral replication. Finally, during early IAV infection, IL-22 plays a positive role in the control of lung epithelial damages. Overall, IAV infection of DCs activates iNKT cells, providing a rapid source of IL-22 that might be beneficial to preserve the lung epithelium integrity.


Assuntos
Células Epiteliais/citologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Influenza Humana/fisiopatologia , Interleucinas/imunologia , Pulmão/citologia , Células T Matadoras Naturais/imunologia , Animais , Morte Celular , Células Epiteliais/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interleucina 22
14.
J Immunol ; 186(10): 5590-602, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21490153

RESUMO

Influenza A virus (IAV) infection results in a highly contagious respiratory illness leading to substantial morbidity and occasionally death. In this report, we assessed the in vivo physiological contribution of invariant NKT (iNKT) lymphocytes, a subset of lipid-reactive αß T lymphocytes, on the host response and viral pathogenesis using a virulent, mouse-adapted, IAV H3N2 strain. Upon infection with a lethal dose of IAV, iNKT cells become activated in the lungs and bronchoalveolar space to become rapidly anergic to further restimulation. Relative to wild-type animals, C57BL/6 mice deficient in iNKT cells (Jα18(-/-) mice) developed a more severe bronchopneumonia and had an accelerated fatal outcome, a phenomenon reversed by the adoptive transfer of NKT cells prior to infection. The enhanced pathology in Jα18(-/-) animals was not associated with either reduced or delayed viral clearance in the lungs or with a defective local NK cell response. In marked contrast, Jα18(-/-) mice displayed a dramatically reduced IAV-specific CD8(+) T cell response in the lungs and in lung-draining mediastinal lymph nodes. We further show that this defective CD8(+) T cell response correlates with an altered accumulation and maturation of pulmonary CD103(+), but not CD11b(high), dendritic cells in the mediastinal lymph nodes. Taken together, these findings point to a role for iNKT cells in the control of pneumonia as well as in the development of the CD8(+) T cell response during the early stage of acute IAV H3N2 infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Pulmão/imunologia , Células T Matadoras Naturais/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Transferência Adotiva , Animais , Antígenos CD , Broncopneumonia , Antígeno CD11b , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Vírus da Influenza A Subtipo H3N2/patogenicidade , Cadeias alfa de Integrinas , Pulmão/virologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase , Carga Viral
15.
J Infect Dis ; 206(5): 723-34, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22723642

RESUMO

BACKGROUND: Exogenous activation of pulmonary invariant natural killer T (iNKT) cells, a population of lipid-reactive αß T lymphocytes, with use of mucosal α-galactosylceramide (α-GalCer) administration, is a promising approach to control respiratory bacterial infections. We undertook the present study to characterize mechanisms leading to α-GalCer-mediated protection against lethal infection with Streptococcus pneumoniae serotype 1, a major respiratory pathogen in humans. METHODS AND RESULTS: α-GalCer was administered by the intranasal route before infection with S. pneumoniae. We showed that respiratory dendritic cells (DCs), most likely the CD103(+) subset, play a major role in the activation (IFN-γ and IL-17 release) of pulmonary iNKT cells, whereas alveolar and interstitial macrophages are minor players. After challenge, S. pneumoniae was rapidly (4 hours) eliminated in the alveolar spaces, a phenomenon that depended on respiratory DCs and neutrophils, but not macrophages, and on the early production of both IFN-γ and IL-17. Protection was also associated with the synthesis of various interferon-dependent and IL-17-associated genes as revealed by transcriptomic analysis. CONCLUSIONS: These data imply a new function for pulmonary CD103(+) DCs in mucosal activation of iNKT cells and establish a critical role for both IFN-γ and IL-17 signalling pathways in mediating the innate immune response to S. pneumoniae.


Assuntos
Células Dendríticas/imunologia , Galactosilceramidas/farmacologia , Células T Matadoras Naturais/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Antígenos CD/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Células Dendríticas/microbiologia , Galactosilceramidas/uso terapêutico , Imunidade Inata/imunologia , Cadeias alfa de Integrinas/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/microbiologia , Infecções Pneumocócicas/microbiologia , Transdução de Sinais
16.
Am J Pathol ; 179(4): 1872-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21843496

RESUMO

Dengue virus (DENV), a member of the mosquito-borne flaviviruses, is a serious public health problem in many tropical countries. We assessed the in vivo physiologic contribution of invariant natural killer T (iNKT) cells, a population of nonconventional lipid-reactive αß T lymphocytes, to the host response during experimental DENV infection. We used a mouse-adapted DENV serotype 2 strain that causes a disease that resembles severe dengue in humans. On DENV challenge, splenic and hepatic iNKT cells became activated insofar as CD69 and Fas ligand up-regulation and interferon-γ production. C57BL/6 mice deficient in iNKT cells (Jα18(-/-)) were more resistant to lethal infection than were wild-type animals, and the phenotype was reversed by adoptive transfer of iNKT cells to Jα18(-/-) animals. The absence of iNKT cells in Jα18(-/-) mice was associated with decreased systemic and local inflammatory responses, less liver injury, diminished vascular leak syndrome, and reduced activation of natural killer cells and neutrophils. iNKT cell functions were not necessary for control of primary DENV infection, after either natural endogenous activation or exogenous activation with the canonical iNKT cell agonist α-galactosylceramide. Together, these data reveal a novel and critical role for iNKT cells in the pathogenesis of severe experimental dengue disease.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Células T Matadoras Naturais/imunologia , Animais , Peso Corporal , Citocinas/biossíntese , Dengue/patologia , Dengue/prevenção & controle , Vírus da Dengue/fisiologia , Feminino , Galactosilceramidas/farmacologia , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/imunologia , Análise de Sobrevida , Carga Viral/imunologia , Replicação Viral/fisiologia
17.
J Immunol ; 182(4): 1846-53, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19201836

RESUMO

Unmethylated CpG oligodeoxynucleotides (ODNs), by activating cells of the innate immune system, such as dendritic cells and NK cells, are potent adjuvants for type 1 immune responses. In the present study, we aimed to investigate the role of invariant NKT (iNKT) cells, a subset of lipid-reactive innate lymphocytes, in CpG ODN-induced innate and acquired type 1 responses. Our data show that, in response to the CpG ODN type B 1826, splenic and hepatic iNKT cells become activated and produce IFN-gamma, but not IL-4, both in vitro and in vivo. This Th1 bias is independent from the Ag-presenting molecule CD1d and strongly requires IL-12, at least in vitro. We also report that iNKT cell activation, in response to CpG ODN type B, results in the transactivation of NK cells. To address the potential role of iNKT cells in type 1 innate immunity induced by CpG ODN, a murine model of malignant melanoma was used. We show that CpG ODN type B protects mice against B16F10-induced lung metastasis in wild-type mice, but in a less efficient manner in iNKT cell-deficient animals. Finally, we report that immunization of wild-type mice with CpG ODN type B plus keyhole limpet hemocyanin biases the immune response toward a Th1 direction, an effect strongly mediated by iNKT cells. We conclude that iNKT cells amplify the innate and acquired response to CpG ODN type B, with potentially important consequences for the regulation of immune responses.


Assuntos
Adjuvantes Imunológicos/farmacologia , DNA/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Animais , DNA/farmacologia , Feminino , Interferon gama/biossíntese , Interferon gama/imunologia , Melanoma Experimental/imunologia , Camundongos , Oligodesoxirribonucleotídeos , Células Th1/imunologia
18.
J Immunol ; 182(10): 6105-13, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19414762

RESUMO

Splenic marginal zone B (MZB) lymphocytes represent, along with dendritic cells (DC) a first line of defense against blood-borne pathogens. MZB cells express high levels of MHC class II and CD1d molecules but so far their ability to activate and orientate conventional and innate-like T lymphocytes, such as invariant NKT (iNKT) cells, is still elusive. In the present study, we show that murine MZB cells proliferate, mature phenotypically, and secrete cytokines in response to TLR (except TLR3) agonists. When pulsed with OVA peptide (but not whole OVA), MZB cells promote the release of IFN-gamma and IL-4 by Ag-specific CD4(+) T lymphocytes and their stimulation with the TLR9 agonist CpG oligodeoxynucleotide (ODN), a potent MZB cell activator, biases them toward more Th1 inducers. Unlike DC, CpG ODN-stimulated MZB cells fail to stimulate iNKT cells. Although able to activate iNKT hybridomas, MZB cells sensitized with free alpha-galactosylceramide (alpha-GalCer), a CD1d-restricted glycolipid Ag, do not directly activate ex vivo sorted iNKT cells unless DC are added to the culture system. Interestingly, MZB cells amplify the DC-mediated activation of iNKT cells and depletion of MZB cells from total splenocytes strongly reduces iNKT cell activation (cytokine production) in response to alpha-GalCer. Thus, DC and MZB cells provide help to each other to optimize iNKT cell stimulation. Finally, in vivo transfer of alpha-GalCer-loaded MZB cells potently activates iNKT and NK cells. This study confirms and extends the concept that MZB cells are important players in immune responses, a property that might be exploited.


Assuntos
Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Baço/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Ovalbumina/imunologia , Peptídeos , Baço/citologia , Receptores Toll-Like/imunologia
19.
Mucosal Immunol ; 13(1): 128-139, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628425

RESUMO

Interleukin-7 (IL-7) is a critical cytokine in B- and T-lymphocyte development and maturation. Recent evidence suggests that IL-7 is a preferential homeostatic and survival factor for RORγt+ innate T cells such as natural killer T (NKT) cells, γδT cells, and mucosal-associated invariant T (MAIT) cells in the periphery. Given the important contribution of these populations in antibacterial immunity at barrier sites, we questioned whether IL-7 could be instrumental in boosting the local host immune response against respiratory bacterial infection. By using a cytokine-monoclonal antibody approach, we illustrated a role for topical IL-7 delivery in increasing the pool of RORγt+ IL-17A-producing innate T cells. Prophylactic IL-7 treatment prior to Streptococcus pneumoniae infection led to better bacterial containment, a process associated with increased neutrophilia and that depended on γδT cells and IL-17A. Last, combined delivery of IL-7 and α-galactosylceramide (α-GalCer), a potent agonist for invariant NKT (iNKT) cells, conferred an almost total protection in terms of survival, an effect associated with enhanced IL-17 production by innate T cells and neutrophilia. Collectively, we provide a proof of concept that IL-7 enables fine-tuning of innate T- cell functions. This might pave the way for considering IL-7 as an innovative biotherapeutic against bacterial infection.


Assuntos
Imunoterapia/métodos , Interleucina-17/metabolismo , Interleucina-7/metabolismo , Células T Matadoras Naturais/metabolismo , Neutrófilos/imunologia , Infecções Pneumocócicas/imunologia , Infecções Respiratórias/imunologia , Streptococcus pneumoniae/fisiologia , Animais , Anticorpos Bloqueadores/metabolismo , Células Cultivadas , Galactosilceramidas/imunologia , Humanos , Imunidade Inata , Interleucina-7/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
20.
Commun Biol ; 3(1): 237, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409640

RESUMO

Like all obligate intracellular pathogens, influenza A virus (IAV) reprograms host cell's glucose and lipid metabolism to promote its own replication. However, the impact of influenza infection on white adipose tissue (WAT), a key tissue in the control of systemic energy homeostasis, has not been yet characterized. Here, we show that influenza infection induces alterations in whole-body glucose metabolism that persist long after the virus has been cleared. We report depot-specific changes in the WAT of IAV-infected mice, notably characterized by the appearance of thermogenic brown-like adipocytes within the subcutaneous fat depot. Importantly, viral RNA- and viral antigen-harboring cells are detected in the WAT of infected mice. Using in vitro approaches, we find that IAV infection enhances the expression of brown-adipogenesis-related genes in preadipocytes. Overall, our findings shed light on the role that the white adipose tissue, which lies at the crossroads of nutrition, metabolism and immunity, may play in influenza infection.


Assuntos
Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Infecções por Orthomyxoviridae/metabolismo , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Influenza Humana/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA