Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochem J ; 476(5): 783-794, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30755463

RESUMO

Type IV P-type ATPases (P4 ATPases) are lipid flippases that catalyze phospholipid transport from the exoplasmic to the cytoplasmic leaflet of cellular membranes, but the mechanism by which they recognize and transport phospholipids through the lipid bilayer remains unknown. In the present study, we succeeded in purifying recombinant aminophospholipid ATPase 2 (ALA2), a member of the P4 ATPase subfamily in Arabidopsis thaliana, in complex with the ALA-interacting subunit 5 (ALIS5). The ATP hydrolytic activity of the ALA2-ALIS5 complex was stimulated in a highly specific manner by phosphatidylserine. Small changes in the stereochemistry or the functional groups of the phosphatidylserine head group affected enzymatic activity, whereas alteration in the length and composition of the acyl chains only had minor effects. Likewise, the enzymatic activity of the ALA2-ALIS5 complex was stimulated by both mono- and di-acyl phosphatidylserines. Taken together, the results identify the lipid head group as the key structural element for substrate recognition by the P4 ATPase.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Fosfatidilserinas/química , Proteínas de Transferência de Fosfolipídeos/química , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatidilserinas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
2.
Biochemistry ; 51(6): 1092-100, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22257086

RESUMO

The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O(2) reduction. Reconstitution of the detergent-solubilized enzyme in small unilamellar soybean phosphatidylcholine vesicles resulted in a lowering of the pK(a) in the pH dependence profile of the proton-uptake rate. This pK(a) change resulted in decreased proton-uptake rates in the pH range of ~6.5-9.5, which is explained in terms of lowering of the pK(a) of an internal proton donor within CytcO. At pH 7.5, the rate decreased to the same extent when vesicles were prepared from the pure zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho(1-rac-glycerol) (DOPG). In addition, a small change in the internal Cu(A)-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Proteínas de Membrana/química , Prótons , Vesículas Citoplasmáticas/enzimologia , Detergentes/química , Heme/análogos & derivados , Heme/química , Concentração de Íons de Hidrogênio , Metabolismo dos Lipídeos , Oxirredução , Fotólise , Rhodobacter sphaeroides/enzimologia , Solubilidade , Glycine max/enzimologia , Termodinâmica , Thermus thermophilus/enzimologia
3.
J Biol Chem ; 286(2): 1609-17, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047776

RESUMO

We have characterized a putative Ca(2+)-ATPase from the pathogenic bacterium Listeria monocytogenes with the locus tag lmo0841. The purified and detergent-solubilized protein, which we have named Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1), performs a Ca(2+)-dependent ATP hydrolysis and actively transports Ca(2+) after reconstitution in dioleoylphosphatidyl-choline vesicles. Despite a high sequence similarity to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and plasma membrane Ca(2+)-ATPase (PMCA), LMCA1 exhibits important biochemical differences such as a low Ca(2+) affinity (K(0.5) ∼80 µm) and a high pH optimum (pH ∼9). Mutational studies indicate that the unusually high pH optimum can be partially ascribed to the presence of an arginine residue (Arg-795), corresponding in sequence alignments to the Glu-908 position at Ca(2+) binding site I of rabbit SERCA1a, but probably with an exposed position in LMCA1. The arginine is characteristic of a large group of putative bacterial Ca(2+)-ATPases. Moreover, we demonstrate that H(+) is countertransported with a transport stoichiometry of 1 Ca(2+) out and 1 H(+) in per ATP hydrolyzed. The ATPase may serve an important function by removing Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH.


Assuntos
Cálcio/metabolismo , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Trifosfato de Adenosina/metabolismo , Álcalis/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Transporte Biológico Ativo/fisiologia , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Estrutura Terciária de Proteína , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
Nature ; 437(7056): 286-9, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16148937

RESUMO

In aerobic organisms, cellular respiration involves electron transfer to oxygen through a series of membrane-bound protein complexes. The process maintains a transmembrane electrochemical proton gradient that is used, for example, in the synthesis of ATP. In mitochondria and many bacteria, the last enzyme complex in the electron transfer chain is cytochrome c oxidase (CytcO), which catalyses the four-electron reduction of O2 to H2O using electrons delivered by a water-soluble donor, cytochrome c. The electron transfer through CytcO, accompanied by proton uptake to form H2O drives the physical movement (pumping) of four protons across the membrane per reduced O2. So far, the molecular mechanism of such proton pumping driven by electron transfer has not been determined in any biological system. Here we show that proton pumping in CytcO is mechanistically coupled to proton transfer to O2 at the catalytic site, rather than to internal electron transfer. This scenario suggests a principle by which redox-driven proton pumps might operate and puts considerable constraints on possible molecular mechanisms by which CytcO translocates protons.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Sítios de Ligação , Transporte Biológico , Catálise , Transporte de Elétrons , Lipossomos/metabolismo , Modelos Biológicos , Modelos Moleculares , Oxigênio/metabolismo , Fenolsulfonaftaleína , Prótons , Rhodobacter sphaeroides/enzimologia , Relação Estrutura-Atividade
5.
Biochim Biophys Acta ; 1767(5): 381-6, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17466260

RESUMO

Cytochrome c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria where it translocates protons across a membrane thereby maintaining an electrochemical proton gradient. Results from earlier studies on detergent-solubilized cytochrome c oxidase have shown that individual reaction steps associated with proton pumping display pH-dependent kinetics. Here, we investigated the effect of pH on the kinetics of these reaction steps with membrane-reconstituted cytochrome c oxidase such that the pH was adjusted to different values on the inside and outside of the membrane. The results show that the pH on the inside of the membrane fully determines the kinetics of internal electron transfers that are linked to proton pumping. Thus, even though proton release is rate limiting for these reaction steps (Salomonsson et al., Proc. Natl. Acad. Sci. USA, 2005, 102, 17624), the transition kinetics is insensitive to the outside pH (in the range 6-9.5).


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Concentração de Íons de Hidrogênio , Prótons , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Elétrons , Cinética , Conformação Proteica , Rhodobacter sphaeroides/enzimologia
6.
Biochim Biophys Acta ; 1757(5-6): 388-94, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16806055

RESUMO

Cytochrome c oxidase (CytcO) is a redox-driven proton pump in the respiratory chain of mitochondria and many aerobic bacteria. The results from several studies have shown that zinc ions interfere with both the uptake and release of protons, presumably by binding near the orifice of the proton entrance and exit pathways. To elucidate the effect of Zn2+ binding on individual electron and proton-transfer reactions, in this study, we have investigated the reaction of the fully reduced R. sphaeroides CytcO with O2, both with enzyme in detergent solution and reconstituted in phospholipid vesicles, and, with and without, Zn2+. The results show that addition of Zn2+ at concentrations of < or = 250 microM to the outside of the vesicles did not alter the transition rates between intermediates PR (P3)-->F3-->O4. However, proton pumping was impaired specifically during the P3-->F3, but not during the F3-->O4 transition at Zn2+ concentrations of < or = 25 microM. Furthermore, proton pumping during the P3-->F3 transition was typically impaired with the "as isolated" CytcO, which was found to contain Zn2+ ions at microM concentration. As has already been shown, Zn2+ was also found to obstruct proton uptake during the P3-->F3 transition, presumably by binding to a site near the orifice of the D-pathway. In this work we found a KI of approximately 1 microM for this binding site. In conclusion, the results show that Zn2+ ions bind on both sides of CytcO and that binding of Zn2+ at the proton output side selectively impairs proton release during the P3-->F3 transition.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Bombas de Próton/química , Prótons , Rhodobacter sphaeroides/enzimologia , Zinco , Transporte Biológico , Domínio Catalítico , Cátions Bivalentes , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Oxirredução , Oxigênio/química , Fosfolipídeos/química , Inibidores da Bomba de Prótons , Zinco/farmacologia
7.
J Inorg Biochem ; 140: 6-11, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25042731

RESUMO

The aa3-type cytochrome c oxidases (CytcOs) from e.g. Rhodobacter sphaeroides and Paracoccus denitrificans harbor two proton-transfer pathways. The K pathway is used for proton uptake upon reduction of the CytcO, while the D pathway is used after binding of O2 to the catalytic site. The aim of the present study was to determine whether or not CytcO in which the K pathway is blocked (by e.g. the Lys362Met replacement) is capable of pumping protons. The process can not be studied using conventional assays because the O2-reduction activity is too low when the K pathway is blocked. Consequently, proton pumping with a blocked K pathway has not been demonstrated directly. Here, the Lys362Met and Ser299Glu structural variants were reconstituted in liposomes and allowed to (slowly) become completely reduced. Then, the reaction with O2 was studied with µs time resolution after flash photolysis of a blocking CO ligand bound to heme a3. The data show that with both the inactive Lys362Met and partly active Ser299Glu variants proton release occurred with the same time constants as with the wild-type oxidase, i.e. ~200µs and ~3ms, corresponding in time to formation of the ferryl and oxidized states, respectively. Thus, the data show that the K pathway is not required for proton pumping, suggesting that D and K pathways operate independently of each other after binding of O2 to the catalytic site.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Bombas de Próton , Complexo IV da Cadeia de Transporte de Elétrons/química , Conformação Proteica
8.
Biochemistry ; 47(17): 4929-35, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18393448

RESUMO

Cytochrome c oxidase couples electron transfer from cytochrome c to O 2 to proton pumping across the membrane. In the initial part of the reaction of the reduced cytochrome c oxidase with O 2, an electron is transferred from heme a to the catalytic site, parallel to the membrane surface. Even though this electron transfer is not linked to proton uptake from solution, recently Belevich et al. [(2006) Nature 440, 829] showed that it is linked to transfer of charge perpendicular to the membrane surface (electrogenic reaction). This electrogenic reaction was attributed to internal transfer of a proton from Glu286, in the D proton pathway, to an unidentified protonatable site "above" the heme groups. The proton transfer was proposed to initiate the sequence of events leading to proton pumping. In this study, we have investigated electrogenic reactions in structural variants of cytochrome c oxidase in which residues in the second, K proton pathway of cytochrome c oxidase were modified. The results indicate that the electrogenic reaction linked to electron transfer to the catalytic site originates from charge transfer within the K pathway, which presumably facilitates reduction of the site.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Prótons , Rhodobacter sphaeroides/enzimologia , Absorção , Domínio Catalítico , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Heme/metabolismo , Cinética , Mutação , Oxirredução , Oxigênio/metabolismo
9.
Proc Natl Acad Sci U S A ; 102(49): 17624-9, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16306266

RESUMO

In mitochondria and aerobic bacteria energy conservation involves electron transfer through a number of membrane-bound protein complexes to O2. The reduction of O2, accompanied by the uptake of substrate protons to form H2O, is catalyzed by cytochrome c oxidase (CcO). This reaction is coupled to proton translocation (pumping) across the membrane such that each electron transfer to the catalytic site is linked to the uptake of two protons from one side and the release of one proton to the other side of the membrane. To address the mechanism of vectorial proton translocation, in this study we have investigated the solvent deuterium isotope effect of proton-transfer rates in CcO oriented in small unilamellar vesicles. Although in H2O the uptake and release reactions occur with the same rates, in D2O the substrate and pumped protons are taken up first (tau(D) congruent with 200 micros, "peroxy" to "ferryl" transition) followed by a significantly slower proton release to the other side of the membrane (tau(D) congruent with 1 ms). Thus, the results define the order and timing of the proton transfers during a pumping cycle. Furthermore, the results indicate that during CcO turnover internal electron transfer to the catalytic site is controlled by the release of the pumped proton, which suggests a mechanism by which CcO orchestrates a tight coupling between electron transfer and proton translocation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Prótons , Rhodobacter sphaeroides/enzimologia , Detergentes/farmacologia , Lipídeos/química , Modelos Moleculares , Estrutura Quaternária de Proteína , Soluções , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA