Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Annu Rev Genet ; 51: 311-333, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28876981

RESUMO

Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.


Assuntos
Bacillus/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Feromônios/genética , Receptores de Feromônios/genética , Streptococcus/genética , Bacillus/classificação , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , Feromônios/metabolismo , Filogenia , Percepção de Quorum/genética , Receptores de Feromônios/metabolismo , Transdução de Sinais , Streptococcus/classificação , Streptococcus/metabolismo , Relação Estrutura-Atividade , Transativadores/genética , Transativadores/metabolismo
2.
J Bacteriol ; 205(6): e0008923, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37195233

RESUMO

The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans. S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX), whose expression is induced by two types of peptide signals: CSP (competence stimulating peptide, encoded by comC) and XIP (sigX-inducing peptide, encoded by comS). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus, but not homologs of S. mutans blpRH (also known as comDE). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing sigX-inducing peptide (XIP), akin to that of S. mutans, and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans, implying that cross talk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.


Assuntos
Proteínas de Bactérias , Streptococcus mutans , Streptococcus mutans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptococcus/genética , Streptococcus/metabolismo , Peptídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Competência de Transformação por DNA
3.
J Bacteriol ; 205(7): e0008723, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37341600

RESUMO

Streptococcus pneumoniae is an agent of otitis media, septicemia, and meningitis and remains the leading cause of community-acquired pneumonia regardless of vaccine use. Of the various strategies that S. pneumoniae takes to enhance its potential to colonize the human host, quorum sensing (QS) is an intercellular communication process that provides coordination of gene expression at a community level. Numerous putative QS systems are identifiable in the S. pneumoniae genome, but their gene-regulatory activities and contributions to fitness have yet to be fully evaluated. To contribute to assessing regulatory activities of rgg paralogs present in the D39 genome, we conducted transcriptomic analysis of mutants of six QS regulators. Our results find evidence that at least four QS regulators impact the expression of a polycistronic operon (encompassing genes spd_1517 to spd_1513) that is directly controlled by the Rgg/SHP1518 QS system. As an approach to unravel the convergent regulation placed on the spd_1513-1517 operon, we deployed transposon mutagenesis screening in search of upstream regulators of the Rgg/SHP1518 QS system. The screen identified two types of insertion mutants that result in increased activity of Rgg1518-dependent transcription, one type being where the transposon inserted into pepO, an annotated endopeptidase, and the other type being insertions in spxB, a pyruvate oxidase. We demonstrate that pneumococcal PepO degrades SHP1518 to prevent activation of Rgg/SHP1518 QS. Moreover, the glutamic acid residue in the conserved "HExxH" domain is indispensable for the catalytic function of PepO. Finally, we confirmed the metalloendopeptidase property of PepO, which requires zinc ions, but not other ions, to facilitate peptidyl hydrolysis. IMPORTANCE Streptococcus pneumoniae uses quorum sensing to communicate and regulate virulence. In our study, we focused on one Rgg quorum sensing system (Rgg/SHP1518) and found that multiple other Rgg regulators also control it. We further identified two enzymes that inhibit Rgg/SHP1518 signaling and revealed and validated one enzyme's mechanisms for breaking down quorum sensing signaling molecules. Our findings shed light on the complex regulatory network of quorum sensing in Streptococcus pneumoniae.


Assuntos
Percepção de Quorum , Streptococcus pneumoniae , Humanos , Percepção de Quorum/fisiologia , Streptococcus pneumoniae/genética , Proteínas de Bactérias/genética , Virulência , Ligação Proteica , Regulação Bacteriana da Expressão Gênica
4.
Infect Immun ; 91(2): e0050022, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36715551

RESUMO

The peptidoglycan of Staphylococcus aureus is a critical cell envelope constituent and virulence factor that subverts host immune defenses and provides protection against environmental stressors. Peptidoglycan chains of the S. aureus cell wall are processed to characteristically short lengths by the glucosaminidase SagB. It is well established that peptidoglycan is an important pathogen-associated molecular pattern (PAMP) that is recognized by the host innate immune system and promotes production of proinflammatory cytokines, including interleukin-1ß (IL-1ß). However, how bacterial processing of peptidoglycan drives IL-1ß production is comparatively unexplored. Here, we tested the involvement of staphylococcal glucosaminidases in shaping innate immune responses and identified SagB as a mediator of IL-1ß production. A ΔsagB mutant fails to promote IL-1ß production by macrophages and dendritic cells, and processing of peptidoglycan by SagB is essential for this response. SagB-dependent IL-1ß production by macrophages is independent of canonical pattern recognition receptor engagement and NLRP3 inflammasome-mediated caspase activity. Instead, treatment of macrophages with heat-killed cells from a ΔsagB mutant leads to reduced caspase-independent cleavage of pro-IL-1ß, resulting in accumulation of the pro form in the macrophage cytosol. Furthermore, SagB is required for virulence in systemic infection and promotes IL-1ß production in a skin and soft tissue infection model. Taken together, our results suggest that the length of S. aureus cell wall glycan chains can drive IL-1ß production by innate immune cells through a previously undescribed mechanism related to IL-1ß maturation.


Assuntos
Peptidoglicano , Staphylococcus aureus , Hexosaminidases , Inflamassomos , Interleucina-1beta , Caspases , Parede Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1
5.
Mol Microbiol ; 117(2): 525-538, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923680

RESUMO

Streptococcus pyogenes, also known as group A Streptococcus or GAS, is a human-restricted pathogen causing a diverse array of infections. The ability to adapt to different niches requires GAS to adjust gene expression in response to environmental cues. We previously identified the abundance of biometals and carbohydrates led to natural induction of the Rgg2/3 cell-cell communication system (quorum sensing, QS). Here we determined the mechanism by which the Rgg2/3 QS system is stimulated exclusively by mannose and repressed by glucose, a phenomenon known as carbon catabolite repression (CCR). Instead of carbon catabolite protein A, the primary mediator of CCR in Gram-positive bacteria; CCR of Rgg2/3 requires the PTS regulatory domain (PRD)-containing transcriptional regulator Mga. Deletion of Mga led to carbohydrate-independent activation of Rgg2/3 by down-regulating rgg3, the QS repressor. Through phosphoablative and phosphomimetic substitutions within Mga PRDs, we demonstrated that selective phosphorylation of PRD1 conferred repression of the Rgg2/3 system. Moreover, given the carbohydrate specificity mediating Mga-dependent governance over Rgg2/3, we tested mannose-specific PTS components and found the EIIA/B subunit ManL was required for Mga-dependent repression. These findings provide newfound connections between PTSMan , Mga, and QS, and further demonstrate that Mga is a central regulatory nexus for integrating nutritional status and virulence.


Assuntos
Repressão Catabólica , Streptococcus pyogenes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Percepção de Quorum/genética , Streptococcus pyogenes/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(39): 24494-24502, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32907945

RESUMO

Regulator gene of glucosyltransferase (Rgg) family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in Streptococcus species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg-SHP and Rgg-target DNA promoter specificity was unknown. To close this gap, we determined the cryoelectron microscopy (cryo-EM) structure of Streptococcus thermophilus Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures with that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both Streptococcus dysgalactiae Rgg2 and S. thermophilus Rgg3 in complex with their target DNA promoters. The physiological importance of observed Rgg-DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure-function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Feromônios/metabolismo , Streptococcus thermophilus/metabolismo , Transativadores/química , Transativadores/metabolismo , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Regulação Bacteriana da Expressão Gênica , Feromônios/química , Streptococcus/genética , Streptococcus/metabolismo , Streptococcus thermophilus/química , Streptococcus thermophilus/genética , Transativadores/genética
7.
J Bacteriol ; 204(9): e0017622, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35938850

RESUMO

Cell-cell signaling mediated by Rgg-family transcription factors and their cognate pheromones is conserved in Firmicutes, including all streptococci. In Streptococcus pyogenes, or group A strep (GAS), one of these systems, the Rgg2/3 quorum sensing (QS) system, has been shown to regulate phenotypes, including cellular aggregation and biofilm formation, lysozyme resistance, and macrophage immunosuppression. Here, we show the abundance of several secreted virulence factors (streptolysin O, SpyCEP, and M protein) decreases upon induction of QS. The main mechanism underlying the changes in protein levels appears to be transcriptional, occurs downstream of the QS circuit, and is dysregulated by the deletion of an Rgg2/3 QS-regulated major facilitator superfamily (MFS) transporter. Additionally, we identify this MFS transporter as the factor responsible for a previously observed increase in aminoglycoside sensitivity in QS-induced cells. IMPORTANCE The production of virulence factors is a tightly regulated process in bacterial pathogens. Efforts to elucidate the mechanisms by which genes are regulated may advance the understanding of factors influencing pathogen behavior or cellular physiology. This work finds expression of a major facilitator superfamily (MFS) transporter, which is governed by a quorum sensing (QS) system, impacts the expression of multiple virulence factors and accounts for QS-dependent antibiotic susceptibility. Although the mechanism underlying this effect is not clear, MFS orthologs with high sequence similarity from S. pneumoniae and S. porcinus were unable to substitute indicating substrate specificity of the GAS MFS gene. These findings demonstrate novel associations between expression of a transmembrane transporter and virulence factor expression and aminoglycoside transport.


Assuntos
Percepção de Quorum , Infecções Estreptocócicas , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Muramidase/metabolismo , Feromônios/metabolismo , Percepção de Quorum/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética
8.
J Bacteriol ; 204(11): e0017522, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314832

RESUMO

Streptococcus pyogenes, otherwise known as Group A Streptococcus (GAS), is an important and highly adaptable human pathogen with the ability to cause both superficial and severe diseases. Understanding how S. pyogenes senses and responds to its environment will likely aid in determining how it causes a breadth of diseases. One regulatory network involved in GAS's ability to sense and respond to the changing environment is the Rgg2/3 quorum sensing (QS) system, which responds to metal and carbohydrate availability and regulates changes to the bacterial surface. To better understand the impact of Rgg2/3 QS on S. pyogenes physiology, we performed RNA-seq and tandem mass tag (TMT)-LC-MS/MS analysis on cells in which this system was induced with short hydrophobic peptide (SHP) pheromone or disrupted. Primary findings confirmed that pheromone stimulation in wild-type cultures is limited to the induction of operons whose promoters contain previously determined Rgg2/3 binding sequences. However, a deletion mutant of rgg3, a strain that endogenously produces elevated amounts of pheromone, led to extended alterations of the transcriptome and proteome, ostensibly by stress-induced pathways. Under such exaggerated pheromone conditions, a connection was identified between Rgg2/3 and the stringent response. Mutation of relA, the bifunctional guanosine tetra- and penta-phosphate nucleoside synthetase/hydrolase, and alarmone synthase genes sasA and sasB, impacted culture doubling times and disabled induction of Rgg2/3 in response to mannose, while manipulation of Rgg2/3 signaling modestly altered nucleotide levels. Our findings indicate that excessive pheromone production or exposure places stress on GAS resulting in an indirect altered proteome and transcriptome beyond primary pheromone signaling. IMPORTANCE Streptococcus pyogenes causes several important human diseases. This study evaluates how the induction or disruption of a cell-cell communication system alters S. pyogenes's gene expression and, in extreme conditions, its physiology. Using transcriptomic and proteomic approaches, the results define the pheromone-dependent regulon of the Rgg2/3 quorum sensing system. In addition, we find that excessive pheromone stimulation, generated by genetic disruption of the Rgg2/3 system, leads to stress responses that are associated with the stringent response. Disruption of stringent response affects the ability of the cell-cell communication system to respond under normally inducing conditions. These findings assist in the determination of how S. pyogenes is impacted by and responds to nontraditional sources of stress.


Assuntos
Streptococcus pyogenes , Transcriptoma , Humanos , Streptococcus pyogenes/metabolismo , Proteômica , Proteoma/genética , Cromatografia Líquida , Transativadores/genética , Proteínas de Bactérias/metabolismo , Espectrometria de Massas em Tandem , Percepção de Quorum/genética , Feromônios/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
J Bacteriol ; 204(5): e0010222, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35416690

RESUMO

Atypical antipsychotic (AAP) medication is a critical tool for treating symptoms of psychiatric disorders. While AAPs primarily target dopamine (D2) and serotonin (5HT2A and 5HT1A) receptors, they also exhibit intrinsic antimicrobial activity as an off-target effect. Because AAPs are often prescribed to patients for many years, a potential risk associated with long-term AAP use is the unintended emergence of bacteria with antimicrobial resistance (AMR). Here, we show that exposure to the AAP quetiapine at estimated gut concentrations promotes AMR in Escherichia coli after 6 weeks. Quetiapine-exposed isolates exhibited an increase in MICs for ampicillin, tetracycline, ceftriaxone, and levofloxacin. By whole-genome sequencing analysis, we identified mutations in genes that confer AMR, including the repressor for the multiple antibiotic resistance mar operon (marR), and real-time reverse transcription-quantitative PCR (RT-qPCR) analysis showed increased levels of marA, acrA, and tolC mRNAs and reduced levels of ompF mRNA in the isolates carrying marR mutations. To determine the contribution of each marR mutation to AMR, we constructed isogenic strains carrying individual mutant marR alleles in the parent background and reevaluated their resistance phenotypes using MIC and RT-qPCR assays. While marR mutations induced robust activity of the mar operon, they resulted in only modest increases in MICs. Interestingly, although these marR mutations did not fully recapitulate the AMR phenotype of the quetiapine-exposed isolates, we show that marR mutations promote growth fitness in the presence of quetiapine. Our findings revealed an important link between the use of AAPs and AMR development in E. coli. IMPORTANCE AAP medication is a cornerstone in the treatment of serious psychiatric disease. The AAPs are known to exhibit antimicrobial activity; therefore, a potential unintended risk of long-term AAP use may be the emergence of AMR, although such risk has received little attention. In this study, we describe the development of multidrug antibiotic resistance in Escherichia coli after 6 weeks of exposure to the AAP quetiapine. Investigation of mutations in the marR gene, which encodes a repressor for the multiple antibiotic resistance (mar) operon, reveals a potential mechanism that increases the fitness of E. coli in the presence of quetiapine. Our findings establish a link between the use of AAPs and AMR development in bacteria.


Assuntos
Antipsicóticos , Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Antipsicóticos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/uso terapêutico , Proteínas Repressoras/genética
10.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747598

RESUMO

Streptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system-a peptide-based signaling system conserved in sequenced isolates of S. pyogenes Deletion of the QS system's transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice, while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to that of the wild type (WT). Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative reverse transcription-PCR (qRT-PCR) subsequently confirmed QS upregulation within 1 h of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.


Assuntos
Proteínas de Bactérias/metabolismo , Orofaringe/microbiologia , Percepção de Quorum , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Transativadores/metabolismo , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Camundongos , Mutação , Faringite/microbiologia , Percepção de Quorum/genética , Transativadores/genética
11.
J Am Chem Soc ; 142(38): 16265-16275, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845143

RESUMO

Mammalian microbiomes encode thousands of biosynthetic gene clusters (BGCs) and represent a new frontier in natural product research. We recently found an abundance of quorum sensing-regulated BGCs in mammalian microbiome streptococci that code for ribosomally synthesized and post-translationally modified peptides (RiPPs) and contain one or more radical S-adenosylmethionine (RaS) enzymes, a versatile superfamily known to catalyze some of the most unusual reactions in biology. In the current work, we target a widespread group of streptococcal RiPP BGCs and elucidate both the reaction carried out by its encoded RaS enzyme and identify its peptide natural product, which we name streptosactin. Streptosactin is the first sactipeptide identified from Streptococcus spp.; it contains two sequential four amino acid sactionine macrocycles, an unusual topology for this compound family. Bioactivity assays reveal potent but narrow-spectrum activity against the producing strain and its closest relatives that carry the same BGC, suggesting streptosactin may be a long-suspected fratricidal agent of Streptococcus thermophilus. Our results highlight mammalian streptococci as a rich source of unusual enzymatic chemistries and bioactive natural products.


Assuntos
Microbiota , Proteínas Citotóxicas Formadoras de Poros/biossíntese , Proteínas Citotóxicas Formadoras de Poros/química , Streptococcus thermophilus/química , Humanos , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Streptococcus thermophilus/metabolismo
12.
J Biol Chem ; 293(3): 931-940, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203527

RESUMO

Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Feromônios/metabolismo , Percepção de Quorum/fisiologia , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/metabolismo , Neprilisina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
14.
J Bacteriol ; 200(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555699

RESUMO

The Rgg2/3 quorum sensing (QS) system is conserved among all sequenced isolates of group A Streptococcus (GAS; Streptococcus pyogenes). The molecular architecture of the system consists of a transcriptional activator (Rgg2) and a transcriptional repressor (Rgg3) under the control of autoinducing peptide pheromones (SHP2 and SHP3). Activation of the Rgg2/3 pathway leads to increases in biofilm formation and resistance to the bactericidal effects of the host factor lysozyme. In this work, we show that deletion of a small gene, spy49_0414c, abolished both phenotypes in response to pheromone signaling. The gene encodes a small, positively charged, secreted protein, referred to as StcA. Analysis of recombinant StcA showed that it can directly interact with GAS cell wall preparations containing phosphodiester-linked carbohydrate polymers but not with preparations devoid of them. Immunofluorescence microscopy detected antibody against StcA bound to the surface of paraformaldehyde-fixed wild-type cells. Expression of StcA in bacterial culture induced a shift in the electrostatic potential of the bacterial cell surface, which became more positively charged. These results suggest that StcA promotes phenotypes by way of ionic interactions with the GAS cell wall, most likely with negatively charged cell wall-associated polysaccharides.IMPORTANCE This study focuses on a small protein, StcA, that is expressed and secreted under induction of Rgg2/3 QS, ionically associating with negatively charged domains on the cell surface. These data present a novel mechanism of resistance to the host factor lysozyme by GAS and have implications in the relevance of this circuit in the interaction between the bacterium and the human host that is mediated by the bacterial cell surface.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum , Transdução de Sinais , Streptococcus pyogenes/fisiologia , Transativadores/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Muramidase/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Feromônios/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Biol Chem ; 292(50): 20544-20557, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29030429

RESUMO

Rap/Rgg/NprR/PlcR/PrgX (RRNPP) quorum-sensing systems use extracellular peptide pheromones that are detected by cytoplasmic receptors to regulate gene expression in firmicute bacteria. Rgg-type receptors are allosterically regulated through direct pheromone binding to control transcriptional activity; however, the receptor activation mechanism remains poorly understood. Previous work has identified a disulfide bond between Cys-45 residues within the homodimer interface of Rgg2 from Streptococcus dysgalactiae (Rgg2Sd). Here, we compared two Rgg2Sd(C45S) X-ray crystal structures with that of wild-type Rgg2Sd and found that in the absence of the intermolecular disulfide, the Rgg2Sd dimer interface is destabilized and Rgg2Sd can adopt multiple conformations. One conformation closely resembled the "disulfide-locked" Rgg2Sd secondary and tertiary structures, but another displayed more extensive rigid-body shifts as well as dramatic secondary structure changes. In parallel experiments, a genetic screen was used to identify mutations in rgg2 of Streptococcus pyogenes (rgg2Sp ) that conferred pheromone-independent transcriptional activation of an Rgg2-stimulated promoter. Eight mutations yielding constitutive Rgg2 activity, designated Rgg2Sp*, were identified, and five of them clustered in or near an Rgg2 region that underwent conformational changes in one of the Rgg2Sd(C45S) crystal structures. The Rgg2Sp* mutations increased Rgg2Sp sensitivity to pheromone and pheromone variants while displaying decreased sensitivity to the Rgg2 antagonist cyclosporine A. We propose that Rgg2Sp* mutations invoke shifts in free-energy bias to favor the active state of the protein. Finally, we present evidence for an electrostatic interaction between an N-terminal Asp of the pheromone and Arg-153 within the proposed pheromone-binding pocket of Rgg2Sp.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/química , Modelos Moleculares , Mutação Puntual , Streptococcus pyogenes/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Ciclosporina/farmacologia , Dimerização , Farmacorresistência Bacteriana , Cinética , Mutagênese Sítio-Dirigida , Feromônios/química , Feromônios/metabolismo , Feromônios/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Streptococcus pyogenes/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Transativadores/química , Transativadores/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/genética
16.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378799

RESUMO

Streptococcus agalactiae (group B streptococcus [GBS]) can colonize the human vaginal tract, leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using transcriptome sequencing (RNA-Seq), the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being upregulated in vivo One of the SaeRS targets, pbsP, a proposed GBS vaccine candidate, is shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acts as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP, by the TCS SaeRS.


Assuntos
Regulação Bacteriana da Expressão Gênica , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Transcriptoma , Vagina/metabolismo , Vagina/microbiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Transdução de Sinais
17.
PLoS Pathog ; 12(12): e1005979, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27907154

RESUMO

Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.


Assuntos
Proteínas de Bactérias/metabolismo , Percepção de Quorum/fisiologia , Streptococcus/fisiologia , Calorimetria , Dicroísmo Circular , Competência de Transformação por DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Feromônios
18.
PLoS Pathog ; 12(12): e1005980, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27907189

RESUMO

In Gram-positive bacteria, cell-to-cell communication mainly relies on extracellular signaling peptides, which elicit a response either indirectly, by triggering a two-component phosphorelay, or directly, by binding to cytoplasmic effectors. The latter comprise the RNPP family (Rgg and original regulators Rap, NprR, PrgX and PlcR), whose members regulate important bacterial processes such as sporulation, conjugation, and virulence. RNPP proteins are increasingly considered as interesting targets for the development of new antibacterial agents. These proteins are characterized by a TPR-type peptide-binding domain, and except for Rap proteins, also contain an N-terminal HTH-type DNA-binding domain and display a transcriptional activity. Here, we elucidate the structure-function relationship of the transcription factor ComR, a new member of the RNPP family, which positively controls competence for natural DNA transformation in streptococci. ComR is directly activated by the binding of its associated pheromone XIP, the mature form of the comX/sigX-inducing-peptide ComS. The crystal structure analysis of ComR from Streptococcus thermophilus combined with a mutational analysis and in vivo assays allows us to propose an original molecular mechanism of the ComR regulation mode. XIP-binding induces release of the sequestered HTH domain and ComR dimerization to allow DNA binding. Importantly, we bring evidence that this activation mechanism is conserved and specific to ComR orthologues, demonstrating that ComR is not an Rgg protein as initially proposed, but instead constitutes a new member of the RNPP family. In addition, identification of XIP and ComR residues important for competence activation constitutes a crucial step towards the design of antagonistic strategies to control gene exchanges among streptococci.


Assuntos
Proteínas de Bactérias/metabolismo , Comunicação Celular , Percepção de Quorum/fisiologia , Streptococcus thermophilus/fisiologia , Proteínas de Bactérias/química , Comunicação Celular/fisiologia , Cristalografia por Raios X , Competência de Transformação por DNA , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Feromônios/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(16): 5177-82, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25847993

RESUMO

Peptide pheromone cell-cell signaling (quorum sensing) regulates the expression of diverse developmental phenotypes (including virulence) in Firmicutes, which includes common human pathogens, e.g., Streptococcus pyogenes and Streptococcus pneumoniae. Cytoplasmic transcription factors known as "Rgg proteins" are peptide pheromone receptors ubiquitous in Firmicutes. Here we present X-ray crystal structures of a Streptococcus Rgg protein alone and in complex with a tight-binding signaling antagonist, the cyclic undecapeptide cyclosporin A. To our knowledge, these represent the first Rgg protein X-ray crystal structures. Based on the results of extensive structure-function analysis, we reveal the peptide pheromone-binding site and the mechanism by which cyclosporin A inhibits activation of the peptide pheromone receptor. Guided by the Rgg-cyclosporin A complex structure, we predicted that the nonimmunosuppressive cyclosporin A analog valspodar would inhibit Rgg activation. Indeed, we found that, like cyclosporin A, valspodar inhibits peptide pheromone activation of conserved Rgg proteins in medically relevant Streptococcus species. Finally, the crystal structures presented here revealed that the Rgg protein DNA-binding domains are covalently linked across their dimerization interface by a disulfide bond formed by a highly conserved cysteine. The DNA-binding domain dimerization interface observed in our structures is essentially identical to the interfaces previously described for other members of the XRE DNA-binding domain family, but the presence of an intermolecular disulfide bond buried in this interface appears to be unique. We hypothesize that this disulfide bond may, under the right conditions, affect Rgg monomer-dimer equilibrium, stabilize Rgg conformation, or serve as a redox-sensitive switch.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Peptídeos Cíclicos/farmacologia , Streptococcus/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ciclosporina/química , Ciclosporina/farmacologia , Ciclosporinas/farmacologia , Dissulfetos/metabolismo , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Feromônios/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
20.
Mol Microbiol ; 99(1): 71-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26418177

RESUMO

Group A Streptococcus (GAS, Streptococcus pyogenes) is a human-restricted pathogen with a capacity to both colonize asymptomatically and cause illnesses ranging from pharyngitis to necrotizing fasciitis. An understanding of how and when GAS switches between genetic programs governing these different lifestyles has remained an enduring mystery and likely requires carefully tuned environmental sensors to activate and silence genetic schemes when appropriate. Herein, we describe the relationship between the Control of Virulence (CovRS, CsrRS) two-component system and the Rgg2/3 quorum-sensing pathway. We demonstrate that responses of CovRS to the stress signals Mg(2+) and a fragment of the antimicrobial peptide LL-37 result in modulated activity of pheromone signaling of the Rgg2/3 pathway through a means of proteolysis of SHP peptide pheromones. This degradation is mediated by the cytoplasmic endopeptidase PepO, which is the first identified enzymatic silencer of an RRNPP-type quorum-sensing pathway. These results suggest that under conditions in which the virulence potential of GAS is elevated (i.e. enhanced virulence gene expression), cellular responses mediated by the Rgg2/3 pathway are abrogated and allow individuals to escape from group behavior. These results also indicate that Rgg2/3 signaling is instead functional during non-virulent GAS lifestyles.


Assuntos
Endopeptidases/metabolismo , Feromônios/metabolismo , Percepção de Quorum , Transdução de Sinais , Streptococcus pyogenes/fisiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes , Histidina Quinase , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Magnésio/metabolismo , Proteínas Repressoras/metabolismo , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/patogenicidade , Virulência , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA