Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38904733

RESUMO

Cholesterol is one of the major components of plasma membrane, where its distribution is nonhomogeneous and it participates in lipid raft formation. In skeletal muscle cholesterol and lipid rafts seem to be important for excitation-contraction coupling and for neuromuscular transmission, involving cholesterol-rich synaptic vesicles. In the present study, nerve and muscle stimulation-evoked contractions were recorded to assess the role of cholesterol in contractile function of mouse diaphragm. Exposure to cholesterol oxidase (0.2 U/ml) and cholesterol-depleting agent methyl-ß-cyclodextrin (1 mM) did not affect markedly contractile responses to both direct and indirect stimulation at low and high frequency. However, methyl-ß-cyclodextrin at high concentration (10 mM) strongly decreased the force of both single and tetanus contractions induced by phrenic nerve stimulation. This decline in contractile function was more profoundly expressed when methyl-ß-cyclodextrin application was combined with phrenic nerve activation. At the same time, 10 mM methyl-ß-cyclodextrin had no effect on contractions upon direct muscle stimulation at low and high frequency. Thus, strong cholesterol depletion suppresses contractile function mainly due to disturbance of the neuromuscular communication, whereas muscle fiber contractility remains resistant to decline.

2.
Mol Neurobiol ; 61(9): 6805-6821, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38353924

RESUMO

ß2-Adrenoceptors (ß2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of ß2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that ß2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. ß2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of ß2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the ß2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on ß2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, ß2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of ß2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the ß2-AR signaling on lipid raft integrity in the neuromuscular junctions.


Assuntos
Junção Neuromuscular , Receptores Adrenérgicos beta 2 , Transmissão Sináptica , Animais , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Masculino , Diafragma/efeitos dos fármacos , Diafragma/inervação , Diafragma/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Colesterol/metabolismo , Exocitose/efeitos dos fármacos , Camundongos Endogâmicos C57BL
3.
Fitoterapia ; 177: 106127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019238

RESUMO

Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L. pulmonaria to counteract oxidative stress and related damages was studied in the mouse diaphragm, the main respiratory muscle. Initial in vitro experiments demonstrated ultraviolet (UV)-absorbing, antioxidant and metal chelating activities of melanin. This melanin can form nanoparticles and stabile colloidal system at concentration of 5 µg/ml. Pretreatment of the muscle with melanin (5 µg/ml) markedly reduced UV-induced increase in intracellular and extracellular reactive oxygen species (ROS) as well as antimycin A-mediated enhancement in mitochondrial ROS production accompanied by lipid peroxidation and membrane asymmetry loss. In addition, melanin attenuated suppression of neuromuscular transmission and alterations of contractile responses provoked by hydrogen peroxide. Thus, this study shed the light on the perspectives of the application of a lichen melanin as a protective component for treatment of skeletal muscle disorders, which are accompanied with an increased ROS production.


Assuntos
Antioxidantes , Líquens , Melaninas , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Melaninas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Líquens/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Diafragma/efeitos dos fármacos , Masculino , Peroxidação de Lipídeos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA