Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 98(6): 1692-1698, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29637882

RESUMO

Cerebral malaria (CM) remains an important cause of morbidity and mortality. Risk for developing CM partially depends on host genetic factors, including variants encoded in the type I interferon (IFN) receptor 1 (IFNAR1). Type I IFNs bind to IFNAR1 resulting in increased expression of IFN responsive genes, which modulate innate and adaptive immune responses. To comprehensively study IFNAR1 genetic variant associations in Malawians with CM or uncomplicated malaria, we used a tag single nucleotide polymorphism approach, based on the HapMap Yoruba in Ibadan, Nigeria, population database. We identified three novel (rs914142, rs12626750, and rs1041867) and one previously published (Chr21:34696785 [C > G]) IFNAR1 variants to be associated with CM. Some of these variants are in gene regulatory regions. Chr21:34696785 (C > G) is in a region encoding histone modifications and transcription factor-binding sites, which suggests gene regulatory activity. Rs12626750 is predicted to bind embryonic lethal abnormal vision system-like RNA-binding protein 1, a RNA-binding protein which can increase the type I IFN response. Furthermore, we examined these variants in an expression quantitative trait loci database and found that a protective variant, rs914142, is associated with lower expression of IFNAR1, whereas the CM-associated variant rs12626750 was associated with increased IFNAR1 expression, suggesting that activation of the type I IFN pathway may contribute to pathogenesis of CM. Future functional studies of IFNAR1 variants are now needed to clarify the role of this pathway in severe malarial diseases.


Assuntos
Malária Cerebral/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor de Interferon alfa e beta/genética , Sequências Reguladoras de Ácido Nucleico/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Malária Cerebral/parasitologia , Malaui , Masculino
2.
mBio ; 7(1): e01300-15, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26884431

RESUMO

UNLABELLED: Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor cerebral iRBC sequestration. IMPORTANCE: There were approximately 198 million cases of malaria worldwide in 2013, with an estimated 584,000 deaths occurring mostly in sub-Saharan African children. CM is a severe and rare form of Plasmodium falciparum infection and is associated with high rates of mortality and neurological morbidity, despite antimalarial treatment. A greater understanding of the pathophysiology of CM would allow the development of adjunctive therapies to improve clinical outcomes. A hallmark of CM is cerebral microvasculature sequestration of P. falciparum-infected red blood cells (iRBCs), which results in vasculopathy in some patients. Our data provide a global analysis of the host pathways associated with CM and newly identify an association of activated neutrophils with brain iRBC sequestration. Products of activated neutrophils could alter endothelial cell receptors and coagulation to facilitate iRBC adherence. Future studies can now examine the role of neutrophils in CM pathogenesis to improve health outcomes.


Assuntos
Encéfalo/irrigação sanguínea , Malária Cerebral/imunologia , Ativação de Neutrófilo , Encéfalo/imunologia , Encéfalo/patologia , Adesão Celular , Criança , Pré-Escolar , Células Endoteliais/citologia , Eritrócitos/parasitologia , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação , Elastase de Leucócito/sangue , Malária Cerebral/genética , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Malaui , Masculino , Redes e Vias Metabólicas/genética , Mieloblastina/sangue , Neutrófilos/fisiologia , Peroxidase/sangue , Plasmodium falciparum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA