Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413530, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352041

RESUMO

The emergence of highly wavelength resolved reactivity information for complex photochemical reaction processes allows the establishment of multi-color reaction modes. One particularly powerful mode is the synergistic two-color reaction, where two colors of light have to be present in the same volume element to either enable or enhance photochemical reactivity that leads to a specific photoproduct. Herein, we introduce a two-color synergistic photochemical reaction system based on a diaryl indenone epoxide (DIO) photoswitch and the cis-to-trans isomerization of a bridged ring-strained azobenzene (SA), which respond to ultraviolet (365 nm) and visible light (430 nm), respectively, with different rates, forming a well-defined heterocyclic photoadduct, DIOSA, that we structurally confirm via single crystal x-ray diffraction (SXRD). To quantitatively capture the effectiveness of the dual-color irradiation as a function of the reaction conditions such as light intensity and starting material ratio as a function of product yield, we introduce a parameter, the photochemical synergistic ratio. A reduced synergistic ratio - that extrapolates to conditions of infinitesimal conversions - allows to compare the efficiency of the synergistic photochemistry at varying reaction conditions.

2.
Angew Chem Int Ed Engl ; 62(36): e202307535, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358799

RESUMO

Independently addressing photoreactive sites within one molecule with two colours of light is a formidable challenge. Here, we combine two sequence independent λ-orthogonal chromophores in one heterotelechelic dilinker molecule, to exploit their disparate reactivity utilizing the same reaction partner, a maleimide-containing polymer. We demonstrate that polymer network formation only proceeds if two colours of light are employed. Upon single colour irradiation, linker-decorated post-functionalized polymers are generated at either wavelength and in either sequence. Network formation, however, is only achieved by sequential or simultaneous two colour irradiation. The herein introduced photoreactive system demonstrates the power of wavelength orthogonal chemistry in macromolecular synthesis.

3.
Angew Chem Int Ed Engl ; 62(37): e202309259, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37485591

RESUMO

We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax =415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH ). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.

4.
J Org Chem ; 87(14): 9296-9300, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749632

RESUMO

We herein report the first light-driven selective monoderivatization (desymmetrization) of two chemically equivalent carbonyl groups in a single chromophore. By comparing of four symmetric regioisomers, featuring two equivalent ortho-methylbenzaldehyde units, we identify dimethyltherephtalaldehydes (DMTAs) which can be activated in a dual wavelength-selective fashion. Under visible light and UV-light irradiation, DMTAs undergo two consecutive Diels-Alder reactions exhibiting near-quantitative endo-selectivity (>99%) and provide excellent yields (96-98%). The influence of the regioisomerism of the dialdehydes on their photochemical behavior is profound, evidenced by an in-depth investigation of their photochemical performance. We exemplify the capability of the photosystems via the synthesis of complex Diels-Alder adducts with various dienophiles, including alkynes.

5.
J Am Chem Soc ; 143(19): 7292-7297, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955743

RESUMO

We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.

6.
Angew Chem Int Ed Engl ; 60(18): 10402-10408, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33571392

RESUMO

Herein, we pioneer a wavelength-gated synthesis route to phenalene diimides. Consecutive Diels-Alder reactions of methylisophthalaldehydes and maleimides afford hexahydro-phenalene-1,6-diol diimides via 5-formyl-hexahydro-benzo[f]isoindoles as the intermediate. Both photoreactions are efficient (82-99 % yield) and exhibit excellent diastereoselectivity (62-98 % d.r.). The wavelength-gated nature of the stepwise reaction enables the modular construction of phenalene diimide scaffolds by choice of substrate and wavelength. Importantly, this synthetic methodology opens a facile avenue to a new class of persistent phenalenyl diimide neutral radicals, constituting a versatile route to spin-active molecules.

7.
J Am Chem Soc ; 142(17): 7744-7748, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32293171

RESUMO

We introduce a highly efficient photoligation system, affording a pro-fluorescent Diels-Alder product that, on demand, converts into an intensively fluorescent naphthalene via E1 elimination in the presence of catalytic amounts of acid. The Diels-Alder reaction of the photocaged diene (o-quinodimethane ether or thioether) with electron-deficient alkynes is induced by UV or visible light. In contrast to previously reported ligation techniques directly leading to fluorescent products, the fluorescence is turned on after the photoligation. Thus, the light absorption of the fluorophore does not undermine the photoligation via competitive absorption, and as a result, photobleaching or side reactions of the fluorophore are not observed. Critically, the gated generation of a fluorescent product allows for fluorometric determination of the conversion. We employ a simple synthesis strategy for heterobifunctional electron-deficient alkynes allowing for facile functionalization of payload molecules.

8.
Chemistry ; 26(71): 16985-16989, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32839970

RESUMO

We report a photochemical reaction system which requires activation by two colors of light. Specifically, a dual wavelength gated system is established by fusing the visible light mediated deprotection of a dithioacetal with the UV light activated Diels-Alder reaction of an o-methylbenzaldehyde with N-ethylmaleimide. Critically, both light sources are required to achieve the Diels-Alder adduct, irradiation with visible or UV light alone does not lead to the target product. The introduced dual gated photochemical system is particularly interesting for application in light driven 3D printing, where two color wavelength activated photoresists may become reality.

9.
J Am Chem Soc ; 141(42): 16605-16609, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31592659

RESUMO

We introduce the hybrid copolymerization of two disparate monomer classes (vinyl monomers and ring-strained cyclic olefins) via living photopolymerization. The living character of the polymerization technique (metal-free photo-ROMP) is demonstrated by consecutive chain-extensions. Further, we propose a mechanism for the copolymerization and analyze the copolymer structure in detail by high-resolution mass spectrometry.

10.
Angew Chem Int Ed Engl ; 58(22): 7470-7474, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916368

RESUMO

We report light-induced reactions in a two-chromophore system capable of sequence-independent λ-orthogonal reactivity relying solely on the choice of wavelength and solvent. In a solution of water and acetonitrile, LED irradiation at λmax =285 nm leads to full conversion of 2,5-diphenyltetrazoles with N-ethylmaleimide to the pyrazoline ligation products. Simultaneously present o-methylbenzaldehyde thioethers are retained. Conversely, LED irradiation at λmax =382 nm is used to induce ligation of the o-methylbenzaldehydes in acetonitrile with N-ethylmaleimide via o-quinodimethanes, while 2,5-diphenyltetrazoles also present are retained. This unprecedented photochemical selectivity is achieved through control of the number and wavelength of incident photons as well as favorable optical properties and quantum yields of the reactants in their environment.

11.
J Am Chem Soc ; 140(37): 11848-11854, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30137988

RESUMO

We introduce a photocaged diene system ( o-quinodimethane thioethers) based on o-methylbenzaldehydes ( o-MBAs) that can be activated with visible light. The pioneered system is accessible in a single step from commercially available starting materials in excellent yields. Variable synthetic handles can be attached to the photocaged diene, often without elaborate protecting group chemistry. Full conversion of various o-methylbenzaldehydes to the Diels-Alder adduct is achieved in the presence of maleimides under catalyst-free conditions triggered by visible light irradiation with LEDs under flow conditions. Unlike the previously reported UV-induced ligation of o-quinodimethanes, the reaction can be conducted both in organic solvents and in aqueous solution. We further demonstrate the ability of the photocaged dienes to ligate two polymer blocks by visible light. The [4+2] nature of the reaction makes it a powerful orthogonal ligation platform.

12.
Macromol Rapid Commun ; 36(11): 1096-102, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25823880

RESUMO

Confocal fluorescence microscopy and spectroscopy are employed to investigate single poly(ladder-type pentaphenylene) (LPPentP) molecules dispersed in thin poly(methyl methacrylate) (PMMA) films at 1.2 K. Emission spectra of single chains show single as well as multi-chromophore emission indicating variegated communication along the chains. The vibronic structure in the emission spectra resembles the one found for other ladder-type polymers. Purely electronic zero-phonon lines in emission are substantially broadened, most probably due to fast spectral diffusion. By surmounting the limitations of emission spectroscopy, nonemitting donor chromophores, which transfer their excitation energy in a radiationless manner to emitting chromophores, are accessed by excitation spectroscopy. Remarkably, by comparing the data of emitting and nonemitting chromophores a contribution to the zero-phonon excitation line width has to be considered which places a lower limit on the estimated energy transfer time of several picoseconds between adjacent chromophores. Finally, the data indicate qualitatively a restricted flexibility of LPPentP compared to poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV).


Assuntos
Polímeros/química , Transferência de Energia , Microscopia Confocal , Fônons , Polimetil Metacrilato/química , Espectrometria de Fluorescência , Temperatura , Compostos de Vinila/química
13.
ACS Appl Polym Mater ; 6(9): 5150-5162, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38752018

RESUMO

Gradient macroporous polymers were produced by polymerization of emulsion templates comprising a continuous monomer phase and an internal aqueous template phase. To produce macroporous polymers with gradient composition, pore size, and foam density, we varied the template formulation, droplet size, and internal phase ratio of emulsion templates continuously and stacked those prior to polymerization. Using the outlined approach, it is possible to vary one property along the resulting macroporous polymer while retaining the other properties. The elastic moduli and crush strengths change along the gradient of the macroporous polymers; their mechanical properties are dominated by those of the weakest layers in the gradient. Macroporous polymers with gradient chemical composition and thus stiffness provide both high impact load and energy adsorption, rendering the gradient foam suitable for impact protective applications. We show that dual-dispensing and simultaneous blending of two different emulsion formulations in various ratios results in a fine, bidirectional change of the template composition, enabling the production of true gradient macroporous polymers with a high degree of design freedom.

14.
Chem Sci ; 15(14): 5218-5224, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577362

RESUMO

Single chain nanoparticles (SCNPs) are a highly versatile polymer architecture consisting of single polymer chains that are intramolecularly crosslinked. Currently, SCNPs are discussed as powerful macromolecular architectures for catalysis, delivery and sensors. Herein, we introduce a methodology based on Förster Resonance Energy Transfer (FRET) to evidence the folding of single polymer chains into SCNPs via fluorescence readout. We initially introduce a molecular FRET pair based on a bimane and nitrobenzoxadiazole (NBD) moiety and study its fluorescence properties in different solvents. We subsequently construct a low dispersity polymer chain carrying NBD units, while exploiting the bimane units for intramolecular chain collapse. Upon chain collapse and SCNP formation - thus bringing bimane and NBD units into close proximity - the SCNPs report their folded state by a strong and unambiguous FRET fluorescence signal. The herein introduced reporting of the folding state of SCNPs solely relies on an optical readout, opening avenues to monitoring SCNP folding without recourse to complex analytical methodologies.

15.
Mater Horiz ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295487

RESUMO

Reflecting on Giacomo Ciamician's revolutionary vision of harnessing sunlight to drive photochemical transformations, the field of materials science has evolved significantly, yet it has been constrained by the misconception that the highest reactivity in photochemical systems is achieved at the absorption maxima. Here, we explore this notion further with evidence from photochemical action plots, demonstrating that reactivity can indeed be maximal at wavelengths significantly separated from the absorption peak. By examining the implications of the disparity between absorptivity and photochemical reactivitiy, we explore its impact for the enhanced penetration depth of light in photoresists, the reduction of energy requirements for photochemical reactions, and its transformative potential for volumetric 3D printing. Ultimately, we argue for a renewed appreciation of light's capability to facilitate photochemical reactions across the entire volume of a material.

16.
Adv Mater ; 35(14): e2211074, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36639825

RESUMO

It is demonstrated that the postfunctionalization of solid polymeric microspheres can generate fully and throughout functionalized materials, contrary to the expectation that core-shell structures are generated. The full functionalization is illustrated on the example of photochemically generated microspheres, which are subsequently transformed into polyradical systems. Given the all-organic nature of the functionalized microspheres, characterization methods with high analytical sensitivity and spatial resolution are pioneered by directly visualizing the inner chemical distribution of the postfunctionalized microspheres based on characteristic electron energy loss signals in transmission electron microscopy (TEM). Specifically, ultrasonic ultramicrotomy is combined successfully with electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) during TEM. These findings open a key avenue for analyzing all-organic low-contrast soft-matter material structures, while the specifically investigated system concomitantly holds promise as an all-radical solid-state functional material.

17.
Chem Commun (Camb) ; 59(31): 4672-4675, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36995010

RESUMO

We introduce single-chain nanoparticles (SCNPs) exclusively folded by covalently bonded ferrocene units. Specifially, we demonstrate the ability of 2-ferrocenyl-1,10-phenanthroline to fuse single-chain collapse with the concomitant introduction of a donor functionality allowing the installation of a Pd-catalytic site, affording the first heterobimetallic ferrocene-functionalized SCNP.

18.
Sci Rep ; 13(1): 6348, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072457

RESUMO

Wood, being renewable and highly abundant material, with excellent high specific strength and stiffness, has received increasing attention to be used in high performance applications such as the structural element of a battery case in an electric vehicle. For a successful implementation of wood in the automotive sector, it is, therefore, crucial to understand the behaviour of wood during and after temperature exposure and in the event of fire with the presence/absence of oxygen. In this study, the mechanical properties of thermally modified and unmodified European beech and birch in air and nitrogen environments at six different treatment intensities were characterised using compression tests, tensile tests, shear tests and Poisson's ratio tests. Further, the elastic properties of these wood species were quantified using the ultrasound measurements. The obtained strength and stiffness exhibited mild improvement upon moderate temperature treatment (200 °C), followed by a decrease at elevated temperature levels. This improvement was somewhat more pronounced under nitrogen treatment than under air treatment conditions. Nevertheless, a more noticeable decrease in the material performance was observed in beech compared to birch, occurring at earlier stages of modifications. This study confirms the tension-compression asymmetry of beech and birch where higher Young's moduli were obtained from tensile than from compression tests for reference and thermally treated beech and birch. The shear moduli obtained from ultrasound for birch were comparable to those obtained from quasi-static tests, whereas there was an overestimation of approximately 11-59% for the shear modulus of beech compared to quasi-static tests. Poisson's ratios from ultrasound tests corresponded well with those from quasi-static tests for untreated beech and birch, but not for thermally modified samples. The Saint-Venant model can satisfactorily predict the shear moduli of untreated and treated beech wood.

19.
Nat Commun ; 14(1): 1103, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843156

RESUMO

Printed organic and inorganic electronics continue to be of large interest for sensors, bioelectronics, and security applications. Many printing techniques have been investigated, albeit often with typical minimum feature sizes in the tens of micrometer range and requiring post-processing procedures at elevated temperatures to enhance the performance of functional materials. Herein, we introduce laser printing with three different inks, for the semiconductor ZnO and the metals Pt and Ag, as a facile process for fabricating printed functional electronic devices with minimum feature sizes below 1 µm. The ZnO printing is based on laser-induced hydrothermal synthesis. Importantly, no sintering of any sort needs to be performed after laser printing for any of the three materials. To demonstrate the versatility of our approach, we show functional diodes, memristors, and a physically unclonable function based on a 6 × 6 memristor crossbar architecture. In addition, we realize functional transistors by combining laser printing and inkjet printing.

20.
Nat Commun ; 13(1): 5132, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050324

RESUMO

Driven by the demand for highly specialized polymeric materials via milder, safer, and sustainable processes, we herein introduce a powerful, purely light driven platform for microsphere synthesis - including facile synthesis by sunlight. Our light-induced step-growth precipitation polymerization produces monodisperse particles (0.4-2.4 µm) at ambient temperature without any initiator, surfactant, additive or heating, constituting an unconventional approach compared to the classically thermally driven synthesis of particles. The microspheres are formed via the Diels-Alder cycloaddition of a photoactive monomer (2-methylisophthaldialdehyde, MIA) and a suitable electron deficient dienophile (bismaleimide). The particles are stable in the dry state as well as in solution and their surface can be further functionalized to produce fluorescent particles or alter their hydrophilicity. The simplicity and versatility of our approach introduces a fresh opportunity for particle synthesis, opening access to a yet unknown material class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA