Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Inorg Chem ; 58(18): 12385-12394, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31486636

RESUMO

Gibbsite (α-Al(OH)3) transformation into layered double hydroxides, such as lithium aluminum hydroxide dihydrate (LiAl-LDH), is generally thought to occur by solid-state intercalation of Li+, in part because of the intrinsic structural similarities in the quasi-2D octahedral Al3+ frameworks of these two materials. However, in caustic environments where gibbsite solubility is high relative to LiAl-LDH, a dissolution-reprecipitation pathway is conceptually enabled, proceeding via precipitation of tetrahedral (Td) aluminate anions (Al(OH)4-) at concentrations held below 150 mM by rapid LiAl-LDH nucleation and growth. In this case, the relative importance of solid-state versus solution pathways is unknown because it requires in situ techniques that can distinguish Al3+ in solution and in the solid phase (gibbsite and LiAl-LDH), simultaneously. Here, we examine this transformation in partially deuterated LiOH solutions, using multinuclear, magic angle spinning, and high field nuclear magnetic resonance spectroscopy (27Al and 6Li MAS NMR), with supporting X-ray diffraction and scanning electron microscopy. In situ 27Al MAS NMR captured the emergence and decline of metastable aluminate ions, consistent with dissolution of gibbsite and formation of LiAl-LDH by precipitation. High field, ex situ 6Li NMR of the the progressively reacted solids resolved an Oh Li+ resonance that narrowed during the transformation. This is likely due to increasing local order in LiAl-LDH, correlating well with observations in high field, ex situ 27Al MAS NMR spectra, where a comparatively narrow LiAl-LDH Oh 27Al resonance emerges upfield of gibbsite resonances. No intermediate pentahedral Al3+ is resolvable. Quantification of aluminate ion concentrations suggests a prominent role for the solution pathway in this system, a finding that could help improve strategies for manipulating Al3+ concentrations in complex caustic waste streams, such as those being proposed to treat the high-level nuclear waste stored at the U.S. Department of Energy's Hanford Nuclear Reservation in Washington State, USA.

2.
Inorg Chem ; 57(19): 11864-11873, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30036042

RESUMO

Aluminum hydroxide (Al(OH)3, gibbsite) dissolution and precipitation processes in alkaline environments play a commanding role in aluminum refining and nuclear waste processing, yet mechanistic aspects underlying sluggish kinetics during crystallization have remained obscured due to a lack of in situ probes capable of isolating incipient ion pairs. At a molecular level Al is cycling between tetrahedral ( T d) coordination in solution to octahedral ( O h) in the solid. We explored dissolution of Al(OH)3 that was used to produce variably saturated aluminate (Al(OH)4-)-containing solutions under alkaline conditions (pH >13) with in situ 27Al magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy, and interrogated the results with ab initio molecular dynamics (AIMD) simulations complemented with chemical shift calculations. The collective results highlight the overall stability of the solvation structure for T d Al in the Al(OH)4- oxyanion as a function of both temperature and Al concentration. The observed chemical shift did not change significantly even when the Al concentration in solution became supersaturated upon cooling and limited precipitation of the octahedral Al(OH)3 phase occurred. However, subtle changes in Al(OH)4- speciation correlated with the dissolution/precipitation reaction were found. AIMD-informed chemical shift calculations indicate that measurable perturbations should begin when the Al(OH)4-···Na+ distance is less than 6 Å, increasing dramatically at shorter distances, coinciding with appreciable changes to the electrostatic interaction and reorganization of the Al(OH)4- solvation shell. The integrated findings thus suggest that, under conditions incipient to and concurrent with gibbsite crystallization, nominally expected contact ion pairs are insignificant and instead medium-range (4-6 Å) solvent-separated Al(OH)4-···Na+ pairs predominate. Moreover, the fact that these medium-range interactions bear directly on resulting gibbsite characteristics was demonstrated by detailed microscopic and X-ray diffraction analysis and by progressive changes in the fwhm of the O h resonance, as measured by in situ NMR. Sluggish gibbsite crystallization may arise from the activation energy associated with disrupting this robust medium-range ion pair interaction.

3.
Environ Sci Technol ; 51(16): 9042-9052, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28703576

RESUMO

Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) natural content, but FeTOTAL remains constant, demonstrating no Fe loss during its reduction-oxidation cyclings. At native pH of 8.6, the anoxic fraction, despite its significant Fe(II), ∼23% of FeTOTAL, exhibits minimal reactivity with TcO4- and CrO42- and much slower reaction kinetics than those measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II)SORBED > 8% clay Fe(II)LABILE); however, the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within the clay mineral structure.


Assuntos
Cromo , Silicatos , Ferro , Oxirredução , Washington
4.
Environ Sci Technol ; 50(22): 12373-12384, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27718556

RESUMO

We report an in situ high-pressure NMR capability that permits natural abundance 17O and 25Mg NMR characterization of dissolved species in aqueous solution and in the presence of supercritical CO2 fluid (scCO2). The dissolution of Mg(OH)2 (brucite) in a multiphase water/scCO2 fluid at 90 atm pressure and 50 °C was studied in situ, with relevance to geological carbon sequestration. 17O NMR spectra allowed identification and distinction of various fluid species including dissolved CO2 in the H2O-rich phase, scCO2, aqueous H2O, and HCO3-. The widely separated spectral peaks for various species can all be observed both dynamically and quantitatively at concentrations as low as 20 mM. Measurement of the concentrations of these individual species also allows an in situ estimate of the hydrogen ion concentration, or pCH+ values, of the reacting solutions. The concentration of Mg2+ can be observed by natural abundance 25Mg NMR at a concentration as low as 10 mM. Quantum chemistry calculations of the NMR chemical shifts on cluster models aided in the interpretation of the experimental results. Evidence for the formation of polymeric Mg2+ clusters at high concentrations in the H2O-rich phase, a possible critical step needed for magnesium carbonate formation, was found.


Assuntos
Dióxido de Carbono/química , Água , Sequestro de Carbono , Espectroscopia de Ressonância Magnética , Solubilidade , Água/química
5.
Langmuir ; 31(27): 7533-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26079871

RESUMO

Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m(2). Above this concentration and up to 76 µmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

6.
Environ Sci Technol ; 49(17): 10736-44, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26200317

RESUMO

Magnesite precipitation from aqueous solution, despite conditions of supersaturation, is kinetically hindered at low temperatures for reasons that remain poorly understood. The present study examines the products of Mg(OH)2 reaction in solutions saturated with supercritical CO2 at high pressures (90 and 110 atm) and low temperatures (35 and 50 °C). Solids characterization combined with in situ solution analysis reveal that the first reaction products are the hydrated carbonates hydromagnesite and nesquehonite, appearing simultaneously with brucite dissolution. Magnesite is not observed until it comprises a minor product at 7 days reaction at 50 °C. Complete transition to magnesite as the sole product at 35 °C (135 days) and at a faster rate at 50 °C (56 days) occurs as the hydrated carbonates slowly dissolve under the slightly acidic conditions generated at high pCO2. Such a reaction progression at high pCO2 suggests that over long term the hydrated Mg-carbonates functioned as intermediates in magnesite formation. These findings highlight the importance of developing a better understanding of the processes expected to occur during CO2 storage. They also support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of CO2 sequestration on geological formations at long time scale.


Assuntos
Dióxido de Carbono/química , Temperatura Baixa , Magnésio/química , Pressão Parcial , Atmosfera/química , Hidróxido de Magnésio/química , Microscopia Eletrônica de Varredura , Soluções , Termogravimetria , Difração de Raios X
7.
Environ Sci Technol ; 49(11): 6474-84, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25815708

RESUMO

The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and µm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.


Assuntos
Plutônio/análise , Poluentes Radioativos do Solo/análise , Urânio/análise , Acidente Nuclear de Chernobyl , Colorado , New Jersey , New Mexico , Plutônio/química , Federação Russa , Espectrometria por Raios X , Ucrânia , Urânio/química , Washington
8.
J Phys Chem A ; 119(12): 2926-39, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25721568

RESUMO

Aqueous metal ions play an important role in many areas of chemistry. The acidities of [Be(H2O)4](2+), [M(H2O)6](2+), M = Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+), and [M(H2O)n](2+), M = Ca(2+) and Sr(2+), n = 7 and 8, complexes have been predicted using density functional theory, second-order Møller-Plesset perturbation theory (MP2), and coupled cluster CCSD(T) theory in the gas phase. pKa's in aqueous solution were predicted by using self-consistent reaction field (SCRF) calculations with different solvation models. The most common binding motif of the majority of the metal +2 complexes is coordination number (CN) 6, with each hexaaquo cluster having reasonably high symmetry for the best arrangement of the water molecules in the first solvation shell. Be(2+) is tetracoordinated, but a second solvation shell of 8 waters is needed to predict the pKa. The Ca(2+) and Sr(2+) aquo clusters have a coordination number of 7 or 8 as found in terms of the energy of the reaction M(H2O)7(2+) + H2O → M(H2O)8(2+) and the pKa values. The calculated geometries are in reasonable agreement with experiment. The SCRF calculations with the conductor-like screening model (COSMO), and the conductor polarized continuum model (CPCM) using COSMO-RS radii, consistently agree best with experiment at the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels of theory. The CCSD(T) level provides the most accurate pKa's, and the MP2 level also provides reliable predictions. Our predictions were used to elucidate the properties of metal +2 ion complexes. The pKa predictions provide confirmation of the size of the first solvation shell sizes. The calculations show that it is still difficult to predict pKa's using this cluster/implicit solvent approach to better than 1 pKa unit.

9.
J Phys Chem A ; 119(14): 3419-28, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25768206

RESUMO

There is significant interest in the role of carbonate minerals for the storage of CO2 and the role of prenucleation clusters in their formation. Global minima for (MgCO3)n (n ≤ 16) structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. The most stable isomers for (MgCO3)n (n < 5) are approximately 2-dimensional. Mg can be bonded to one or two O atoms of a CO3(2-), and the 1-O bonding scheme is more favored as the cluster becomes larger. The average C-Mg coordination number increases as the cluster size increases, and at n = 16, the average C-Mg coordination number was calculated to be 5.2. The normalized dissociation energy to form monomers increases as n increases. At n = 16, the normalized dissociation energy is calculated to be 116.2 kcal/mol, as compared to the bulk value of 153.9 kcal/mol. The adiabatic reaction energies for the recombination reactions of (MgO)n clusters and CO2 to form (MgCO3)n were calculated. The exothermicity of the normalized recombination energy ⟨RE⟩CO2 decreases as n increases and converged to the experimental bulk limit rapidly. The normalized recombination energy ⟨RE⟩CO2 was calculated to be -52.2 kcal/mol for the monomer and -30.7 kcal/mol for n = 16, as compared to the experimental value of -27.9 kcal/mol for the solid phase reaction. Infrared spectra for the lowest energy isomers were calculated, and absorption bands in the previous experimental infrared studies were assigned with our density functional theory predictions. The (13)C, (17)O, and (25) Mg NMR chemical shifts for the clusters were predicted. The results provide insights into the structural and energetic transitions from nanoclusters of (MgCO3)n to the bulk and the spectroscopic properties of clusters for their experimental identification.

10.
Langmuir ; 30(21): 6120-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24810708

RESUMO

Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this study, in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy were used to investigate the swelling/shrinkage and H2O/CO2 sorption of Na(+)-exchanged montmorillonite, Na-SWy-2, as the clay is exposed to variably hydrated supercritical CO2 (scCO2) at 50 °C and 90 bar. Measured d001 values increased in stepwise fashion and sorbed H2O concentrations increased continuously with increasing percent H2O saturation in scCO2, closely following previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show H2O and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types of H2O and CO2 with distinct chemical environments. Based on the absorbance of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, the sorbed CO2 concentration increases dramatically at sorbed H2O concentrations from 0 to 4 mmol/g. Sorbed CO2 then sharply decreases as sorbed H2O increases from 4 to 10 mmol/g. With even higher sorbed H2O concentrations as saturation of H2O in scCO2 was approached, the concentration of sorbed CO2 decreased asymptotically. Two models, one involving space filling and the other a heterogeneous distribution of integral hydration states, are discussed as possible mechanisms for H2O and CO2 intercalations in montmorillonite. The swelling/shrinkage of montmorillonite could affect solid volume, porosity, and permeability of shales. Consequently, the results may aid predictions of shale caprock integrity in large-scale GCS as well as methane transmissivity in enhanced gas recovery operations.

11.
J Phys Chem A ; 118(35): 7469-88, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24679248

RESUMO

An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.


Assuntos
Carbonatos/química , Modelos Químicos , Água/química , Dióxido de Carbono/química , Difusão , Ligação de Hidrogênio , Magnésio/química , Hidróxido de Magnésio/química , Óxido de Magnésio/química , Oxigênio/química , Temperatura , Termodinâmica , Vibração
12.
J Phys Chem A ; 118(17): 3136-46, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24716776

RESUMO

Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg-O bond distance and coordination number both increase as n increases. The calculated average Mg-O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.

13.
Environ Sci Technol ; 47(1): 205-11, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22917276

RESUMO

Geologic storage of CO(2) requires that the caprock sealing the storage rock is highly impermeable to CO(2). Swelling clays, which are important components of caprocks, may interact with CO(2) leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO(2) with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO(2) densities of ≈ 0.15 g/cm(3), followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO(2) bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO(2) are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO(2) in the clay pores is relatively stable over a wide range of CO(2) pressures at a given temperature, indicating the formation of a clay-CO(2) phase. At the excess sorption maximum, increasing CO(2) sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.


Assuntos
Bentonita/química , Dióxido de Carbono/química , Adsorção , Sequestro de Carbono , Difração de Nêutrons
14.
Microsc Microanal ; 19(2): 268-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23388324

RESUMO

This study examines the nature of highly fragile reaction products that form in low water content supercritical carbon dioxide (scCO2) using a combination of focus ion beam/scanning electron microscopy, confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates are fragile rosettes. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. Detailed microscopy analysis revealed that growth of the precipitates either followed a tip growth mechanism, with precipitates forming directly on the forsterite surface if the initial solid was nonporous (natural forsterite) or growth from the surface of the precipitates, where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. Identification of the mechanism of formation of hydrated/hydroxylated magnesium carbonate compound phases is a key factor in unraveling the impact of water recycling on mineral reactivity in low water content scCO2 solutions, which has received a great deal of attention as a result of the potential for CO2 to act as an atmospheric greenhouse gas. Techniques used here to examine these fragile structures are also used to examine a wide range of fragile material surfaces.

15.
Langmuir ; 28(18): 7125-8, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22533894

RESUMO

The interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO(2) molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy, and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO(2) conditions is due to CO(2) migration into the interlayer. Intercalated CO(2) molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO(2) does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

16.
Environ Sci Technol ; 46(7): 4241-8, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22404533

RESUMO

Reactions involving variably hydrated super critical CO(2) (scCO(2)) and a Na saturated dioctahedral smectite (Na-STX-1) were examined by in situ high-pressure X-ray diffraction at 50 °C and 90 bar, conditions that are relevant to long-term geologic storage of CO(2). Both hydration and dehydration reactions were rapid with appreciable reaction occurring in minutes and near steady state occurring within an hour. Hydration occurred stepwise as a function of increasing H(2)O in the system; 1W, 2W-3W, and >3W clay hydration states were stable from ~2-30%, ~31-55 < 64%, and ≥ ~71% H(2)O saturation in scCO(2), respectively. Exposure of sub 1W clay to anhydrous scCO(2) caused interlayer expansion, not contraction as expected for dehydration, suggesting that CO(2) intercalated the interlayer region of the sub 1W clay, which might provide a secondary trapping mechanism for CO(2). In contrast, control experiments using pressurized N(2) and similar initial conditions as in the scCO(2) study, showed little to no change in the d(001) spacing, or hydration states, of the clay. A salient implication for cap rock integrity is that clays can dehydrate when exposed to wet scCO(2). For example, a clay in the ~3W hydration state could collapse by ~3 Å in the c* direction, or ~15%, if exposed to scCO(2) at less than or equal to about 64% H(2)O saturation.


Assuntos
Bentonita/química , Dióxido de Carbono/química , Sódio/química , Água/química , Difração de Raios X/métodos , Pressão , Silicatos/química , Temperatura
17.
Environ Sci Technol ; 46(21): 11610-7, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23016948

RESUMO

Time-dependent reduction of PuO(2)(am) was studied over a range of pH values in the presence of aqueous Fe(II) and magnetite (Fe(3)O(4)) nanoparticles. At early time frames (up to 56 days) very little aqueous Pu was mobilized from PuO(2)(am), even though measured pH and redox potentials, coupled to equilibrium thermodynamic modeling, indicated the potential for significant reduction of PuO(2)(am) to relatively soluble Pu(III). Introduction of Eu(III) or Nd(III) to the suspensions as competitive cations to displace possible sorbed Pu(III) resulted in the release of significant concentrations of aqueous Pu. However, the similarity of aqueous Pu concentrations that resulted from the introduction of Eu(III)/Nd(III) to suspensions with and without magnetite indicated that the Pu was solubilized from PuO(2)(am), not from magnetite.


Assuntos
Nanopartículas de Magnetita/química , Óxidos/química , Plutônio/química , Európio/química , Concentração de Íons de Hidrogênio , Ferro/química , Neodímio/química , Oxirredução , Suspensões , Poluentes Radioativos da Água/química
18.
Environ Sci Technol ; 46(17): 9428-36, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22834714

RESUMO

U(VI) doped hematite was synthesized and exposed to two different organic reductants with E(0) of 0.23 and 0.70 V. A combination of HAADF-TEM and EXAFS provided evidence that uranium was incorporated in hematite in uranate, likely octahedral coordination. XPS indicated that structurally incorporated U(VI) was reduced to U(V), whereas non-incorporated U(VI) was reduced to U(IV). Specifically, the experiments indicate that U(V) was the dominant oxidation state of uranium in hematite around Eh -0.24 to -0.28 V and pH 7.7-8.6 for at least up to 5 weeks of reaction time. U(V), but not U(IV), was also detected in hematite at Eh +0.21 V (pH 7.1-7.3). The results support the hypothesis, based on previous experimental and theoretical work, that the stability field of U(V) is widened relative to U(IV) and U(VI) in uranate coordination environments where the coordination number of U is less than 8.


Assuntos
Compostos Férricos/química , Urânio/química , Oxirredução , Compostos de Urânio/química
19.
J Phys Chem A ; 116(39): 9718-29, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22924553

RESUMO

Electronic structure calculations at the correlated molecular orbital theory and density functional theory levels have been used to generate a reliable set of clustering energies for up to three water molecules in carbon dioxide clusters up to n = 12. The structures and energetics are dominated by Lewis acid-base interactions with hydrogen-bonding interactions playing a lesser energetic role. The actual binding energies are somewhat larger than might be expected. The correlated molecular orbital MP2 method and density functional theory with the ωB97X exchange-correlation functional provide good results for the energetics of the clusters, but the B3LYP and ωB97X-D functionals do not. Seven CO(2) molecules form the first solvent shell about a single H(2)O with four CO(2) molecules interacting with the H(2)O via Lewis acid-base interactions, two CO(2) interacting with the H(2)O by hydrogen bonds, and the seventh CO(2) completing the shell. The Lewis acid-base and weak hydrogen bond interactions between the water molecules and the CO(2) molecules are strong enough to disrupt the trimer ring configuration for as few as seven CO(2) molecules. Calculated (13)C NMR chemical shifts for mCO(2)·(H(2)O)(n) show little change with respect to the number of H(2)O or CO(2) molecules in the cluster. The O-H stretching frequencies do exhibit shifts that can provide information about the interactions between water and CO(2) molecules.

20.
Environ Sci Technol ; 45(7): 2770-6, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21391633

RESUMO

Atomistic simulations were carried out to characterize the coordination environments of U incorporated in three Fe-(hydr)oxide minerals: goethite, magnetite, and hematite. The simulations provided information on U-O and U-Fe distances, coordination numbers, and lattice distortion for U incorporated in different sites (e.g., unoccupied versus occupied sites, octahedral versus tetrahedral) as a function of the oxidation state of U and charge compensation mechanisms (i.e., deprotonation, vacancy formation, or reduction of Fe(III) to Fe(II)). For goethite, deprotonation of first shell hydroxyls enables substitution of U for Fe(III) with a minimal amount of lattice distortion, whereas substitution in unoccupied octahedral sites induced appreciable distortion to 7-fold coordination regardless of U oxidation states and charge compensation mechanisms. Importantly, U-Fe distances of ∼3.6 Šwere associated with structural incorporation of U and cannot be considered diagnostic of simple adsorption to goethite surfaces. For magnetite, the octahedral site accommodates U(V) or U(VI) with little lattice distortion. U substituted for Fe(III) in hematite maintained octahedral coordination in most cases. In general, comparison of the simulations with available experimental data provides further evidence for the structural incorporation of U in iron (hydr)oxide minerals.


Assuntos
Compostos Férricos/química , Modelos Moleculares , Poluentes Radioativos/química , Urânio/química , Adsorção , Óxido Ferroso-Férrico/química , Compostos de Ferro/química , Cinética , Minerais/química , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA