Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 579(7798): 214-218, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161383

RESUMO

Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal-oxide-semiconductor logic1-13. Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information1,3,14-16. Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii-Moriya interaction17-20, which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.

2.
Sci Technol Adv Mater ; 15(2): 025003, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877664

RESUMO

BaTiO3-CoFe2O4 composite films were prepared on (100) SrTiO3 substrates by using a radio-frequency magnetron co-sputtering method at 750 °C. These films contained highly (001)-oriented crystalline phases of perovskite BaTiO3 and spinel CoFe2O4, which can form a self-assembled nanostructure with BaTiO3 well-dispersed into CoFe2O4 under optimized sputtering conditions. A prominent dielectric percolation behavior was observed in the self-assembled nanocomposite. Compared with pure BaTiO3 films sputtered under similar conditions, the nanocomposite film showed higher dielectric constants and lower dielectric losses together with a dramatically suppressed frequency dispersion. This dielectric percolation phenomenon can be explained by the 'micro-capacitor' model, which was supported by measurement results of the electric polarization and leakage current.

3.
Nat Nanotechnol ; 12(10): 980-986, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28825713

RESUMO

Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA