Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202733

RESUMO

Brasenia schreberi is a widely consumed aquatic plant, yet the knowledge regarding its bioactive components, particularly polysaccharides, remains limited. Therefore, this study aimed to optimize the extraction process of polysaccharides from B. schreberi using the response surface method (RSM). Additionally, we characterized the polysaccharides using various methods and assessed their antioxidant capabilities both in vitro and in vivo, employing cell cultures and Caenorhabditis elegans. Furthermore, these polysaccharides were incorporated into a unique yogurt formulation. Our findings demonstrated that hot water extraction was the most suitable method for extracting polysaccharides from B. schreberi, yielding samples with high sugar content, significant antioxidant capacity, and a well-defined spatial structure. Moreover, pectinase was employed for polysaccharide digestion, achieving an enzymolysis rate of 10.02% under optimized conditions using RSM. Notably, the results indicated that these polysaccharides could protect cells from oxidative stress by reducing apoptosis. Surprisingly, at a concentration of 250 µg/mL, the polysaccharides significantly increased the survival rate of C. elegans from 31.05% to 82.3%. Further qPCR results revealed that the polysaccharides protected C. elegans by up-regulating the daf-16 gene and down-regulating mTOR and insulin pathways, demonstrating remarkable antioxidant abilities. Upon addition to the yogurt, the polysaccharides significantly enhanced the water retention, viscosity, and viability of lactic acid bacteria. These outcomes underscore the potential of polysaccharides from B. schreberi as a valuable addition to novel yogurt formulations, thereby providing additional theoretical support for the utilization of B. schreberi.


Assuntos
Antioxidantes , Caenorhabditis elegans , Animais , Antioxidantes/farmacologia , Iogurte , Polissacarídeos/farmacologia , Água
2.
Front Plant Sci ; 15: 1372127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993944

RESUMO

Introduction: Camphora longepaniculata, a crucial commercial crop and a fundamental component of traditional Chinese medicine, is renowned for its abundant production of volatile terpenoids. However, the lack of available genomic information has hindered pertinent research efforts in the past. Methods: To bridge this gap, the present study aimed to use PacBio HiFi, short-read, and highthroughput chromosome conformation capture sequencing to construct a chromosome-level assembly of the C. longepaniculata genome. Results and discussion: With twelve chromosomes accounting for 99.82% (766.69 Mb) of the final genome assembly, which covered 768.10 Mb, it was very complete. Remarkably, the assembly's contig and scaffold N50 values are exceptional as well-41.12 and 63.78 Mb, respectively-highlighting its excellent quality and intact structure. Furthermore, a total of 39,173 protein-coding genes were predicted, with 38,766 (98.96%) of them being functionally annotated. The completeness of the genome was confirmed by the Benchmarking Universal Single-Copy Ortholog evaluation, which revealed 99.01% of highly conserved plant genes. As the first comprehensive assembly of the C. longepaniculata genome, it provides a crucial starting point for deciphering the complex pathways involved in terpenoid production. Furthermore, this excellent genome serves as a vital resource for upcoming research on the breeding and genetics of C. longepaniculata.

3.
Electron. j. biotechnol ; 28: 58-66, July. 2017. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1015852

RESUMO

Background: Cinnamomum longepaniculatum is an important commercial crop and the main source of volatile terpenoids. The biosynthesis of key bioactive metabolites of C. longepaniculatum is not well understood because of the lack of available genomic and transcriptomic information. To address this issue, we performed transcriptome sequencing of C. longepaniculatum leaves to identify factors involved in terpenoid metabolite biosynthesis. Results: Transcriptome sequencing of C. longepaniculatum leaves generated over 56 million raw reads. The transcriptome was assembled using the Trinity software and yielded 82,061 unigenes with an average length of 879.43 bp and N50 value of 1387 bp. Furthermore, Benchmarking Universal Single-Copy Orthologs analysis indicated that our assembly is 91% complete. The unigenes were used to query the nonredundant database depending on sequence similarity; 42,809 unigenes were homologous to known genes in different species, with an annotation rate of 42.87%. The transcript abundance and Gene Ontology analyses revealed that numerous unigenes were associated with metabolism, while others were annotated in functional categories including transcription, signal transduction, and secondary metabolism. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 19,260 unigenes were involved in 385 metabolic pathways, with 233 unigenes found to be involved in terpenoid metabolism. Moreover, 23,463 simple sequence repeats were identified using the microsatellite identification tool. Conclusion: This is the first detailed transcriptome analysis of C. longepaniculatum. The findings provide insights into the molecular basis of terpenoid biosynthesis and a reference for future studies on the genetics and breeding of C. longepaniculatum.


Assuntos
Terpenos/metabolismo , Cinnamomum/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Transcrição Gênica , Cruzamento , Óleos Voláteis/metabolismo , Repetições de Microssatélites , Anotação de Sequência Molecular , Ontologia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA