Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7846): 428-432, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568809

RESUMO

The atmospheric concentration of trichlorofluoromethane (CFC-11) has been in decline since the production of ozone-depleting substances was phased out under the Montreal Protocol1,2. Since 2013, the concentration decline of CFC-11 slowed unexpectedly owing to increasing emissions, probably from unreported production, which, if sustained, would delay the recovery of the stratospheric ozone layer1-12. Here we report an accelerated decline in the global mean CFC-11 concentration during 2019 and 2020, derived from atmospheric concentration measurements at remote sites around the world. We find that global CFC-11 emissions decreased by 18 ± 6 gigagrams per year (26 ± 9 per cent; one standard deviation) from 2018 to 2019, to a 2019 value (52 ± 10 gigagrams per year) that is similar to the 2008-2012 mean. The decline in global emissions suggests a substantial decrease in unreported CFC-11 production. If the sharp decline in unexpected global emissions and unreported production is sustained, any associated future ozone depletion is likely to be limited, despite an increase in the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) by 90 to 725 gigagrams by the beginning of 2020.

2.
J Phys Chem A ; 127(18): 4043-4054, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37115955

RESUMO

The room-temperature rate constants and product branching fractions of CaOn+ (n = 0-3) + O3 are measured using a selected ion flow tube apparatus. Ca+ + O3 produces CaO+ + O2 with k = 9 ± 4 × 10-10 cm3 s-1, within uncertainty equal to the Langevin capture rate constant. This value is significantly larger than several literature values. Most likely, those values were underestimated due to the reformation of Ca+ from the sequential chemistry of higher calcium oxide cations with O3, as explored here. A rate constant of 8 ± 3 × 10-10 cm3 s-1 is recommended. Both CaO+ and CaO2+ react near the capture rate constant with ozone. The CaO+ reaction yields both CaO2+ + O2 (0.80 ± 0.15 branching) and Ca+ + 2O2. Similarly, the CaO2+ reaction yields both CaO3+ + O2 (0.85 ± 0.15 branching) and CaO+ + 2O2. CaO3+ + O3 yield CaO2+ + 2O2 at 2 ± 1 × 10-11 cm3 s-1, about 2% of the capture rate constant. The results are supported using density functional calculations and statistical modeling. In general, CaOn+ + O3 yield CaOn+1+ + O2, the expected oxidation. Some fraction of CaOn+1+ is produced with sufficient internal energy to further dissociate to CaOn-1+ + O2, yielding the same products as the oxidation of O3 by CaOn+. Mesospheric Ca and Ca+ concentrations are modeled as functions of day, latitude, and altitude using the Whole Atmosphere Community Climate Model (WACCM); incorporating the updated rate constants improves agreement with concentrations derived from lidar measurements.

3.
Geophys Res Lett ; 49(12): e2022GL097953, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860422

RESUMO

Mercury, a global contaminant, enters the stratosphere through convective uplift, but its chemical cycling in the stratosphere is unknown. We report the first model of stratospheric mercury chemistry based on a novel photosensitized oxidation mechanism. We find two very distinct Hg chemical regimes in the stratosphere: in the upper stratosphere, above the ozone maximum concentration, Hg0 oxidation is initiated by photosensitized reactions, followed by second-step chlorine chemistry. In the lower stratosphere, ground-state Hg0 is oxidized by thermal reactions at much slower rates. This dichotomy arises due to the coincidence of the mercury absorption at 253.7 nm with the ozone Hartley band maximum at 254 nm. We also find that stratospheric Hg oxidation, controlled by chlorine and hydroxyl radicals, is much faster than previously assumed, but moderated by efficient photo-reduction of mercury compounds. Mercury lifetime shows a steep increase from hours in the upper-middle stratosphere to years in the lower stratosphere.

4.
Environ Sci Technol ; 55(9): 5763-5771, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33818073

RESUMO

Coal and coal gangue spontaneous combustion (CGSC) occurs globally, causing significant environmental pollution. However, its emissions are poorly quantified and are overlooked in global or regional air pollutant emission inventories in previous studies, resulting in the underestimation of its impacts on climate, environment, and public health. This study quantified the emissions of various air pollutants originating from CGSC in Wuhai, a city in China, investigated emission characteristics, and estimated the contribution of CGSC emissions to fine particulate matter (PM2.5) air pollution and related health impacts on a regional scale. The results revealed that the CGSC-related PM2.5 emissions were approximately 4643 t a-1 (95% confidence interval (95% CI): 721; 10447), accounting for 26.3% of the total PM2.5 emissions. Alkanes, alkenes, and aromatics accounted for 69.4, 17.9, and 2.9%, respectively, of the total emissions of volatile organic compounds (VOCs). Due to CGSC emissions, the ambient PM2.5 concentration in Wuhai increased by 5.7 µg m-3 on average, while the nitrate concentration decreased. The number of premature deaths caused by exposure to ambient PM2.5 associated with CGSC reached 381 (95% CI: 290; 452) in Wuhai and surrounding cities in 2017. Urgent control strategies and engineering techniques are needed to mitigate CGSC to protect public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Carvão Mineral/análise , Monitoramento Ambiental , Material Particulado/análise , Combustão Espontânea
5.
J Phys Chem A ; 119(10): 2016-25, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25647411

RESUMO

The fluorinated gases SF6 and C2F5Cl (CFC-115) are chemically inert with atmospheric lifetimes of many centuries which, combined with their strong absorption of IR radiation, results in unusually high global warming potentials. Very long lifetimes imply that mesospheric sinks could make important contributions to their atmospheric removal. In order to investigate this, the photolysis cross sections at the prominent solar Lyman-α emission line (121.6 nm), and the reaction kinetics of SF6 and CFC-115 with the neutral meteoric metal atoms Na, K, Mg, and Fe over large temperature ranges, were measured experimentally. The Na and K reactions exhibit significant non-Arrhenius behavior; quantum chemistry calculations of the potential energy surfaces for the SF6 reactions indicate that the Na and K reactions with SF6 are probably activated by vibrational excitation of the F-SF5 (v3) stretching mode. A limited set of kinetic measurements on Na + SF5CF3 are also presented. The atmospheric removal of these long-lived gases by a variety of processes is then evaluated. For SF6, the removal processes in decreasing order of importance are electron attachment, VUV photolysis, and reaction with K, Na, and H. For CFC-115, the removal processes in decreasing order of importance are reaction with O((1)D), VUV photolysis, and reaction with Na, K, and H.

6.
J Phys Chem A ; 118(23): 4120-9, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24840671

RESUMO

NF3 is a potent anthropogenic greenhouse gas with increasing industrial usage. It is characterized by a large global warming potential due in part to its large atmospheric lifetime. The estimated lifetime of about 550 years means that potential mesospheric destruction processes of NF3 should also be considered. The reactions of NF3 with the neutral metal atoms Na, K, Mg and Fe, which are produced by meteoric ablation in the upper mesosphere, were therefore studied. The observed non-Arrhenius temperature dependences of the reactions between about 190 and 800 K are interpreted using quantum chemistry calculations of the relevant potential energy surfaces. The NF3 absorption cross section at the prominent Lyman-α solar emission line (121.6 nm) was determined to be (1.59 ± 0.10) × 10(-18) cm(2) molecule(-1) (at 300 K). In the mesosphere above 60 km, Lyman-α photolysis is the dominant removal process of NF3; the reactions with K and Na are 1-2 orders of magnitude slower. However, the atmospheric lifetime of NF3 is largely controlled by reaction with O((1)D) and photolysis at wavelengths shorter than 190 nm; these processes dominate below 60 km.

7.
Chem Rev ; 115(10): 4497-541, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25751779
8.
Data Brief ; 45: 108717, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36624875

RESUMO

Phosphorus is an essential nutrient for the growth of marine life. Especially in the East China Sea (ECS) where phosphorus is limited compared to the rest of China's sea, the external input of phosphorus can cause changes in primary productivity, and even induce in harmful algal blooms. In May 2020, the National Natural Science Foundation of China carried out a scientific investigation in the shared Spring Voyage in the ECS. We choose the area between 120.93 ˚ E-125.9 ˚ E and 26.08˚ N - 32.35 ˚ N as research sites for the analysis of the main sources of phosphate in the ECS during summer. The samples were all from the voyage of the research ship (Xiangyanghong 18). Dissolved inorganic phosphorus in seawater was enriched, and dissolved inorganic phosphorus was extracted. Then we measured the oxygen isotopes of phosphate in seawater and introduced the two-component mixing model for the analysis of potential sources of phosphate. In order to further quantitatively analyze the contribution rate of phosphate from different sources in the ECS, we choose a Bayesian isotope mixing model. These data can be used to analyze the contribution of phosphate from different sources in seawater and are helpful to explore the influencing factors of phosphate in the ECS.

10.
J Phys Chem Lett ; 11(21): 9086-9092, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33047964

RESUMO

Airglow is a well-known phenomenon in the Earth's upper atmosphere, which arises from the emissions of energetic atoms and molecules. The Meinel band emission from high vibrationally excited OH(X) radicals is one of the more important contributors to the airglow from the mesosphere/lower thermosphere. The H + O3 reaction has long been regarded as the dominant source of these OH(X, high v) radicals. Here we demonstrate that vacuum ultraviolet (VUV) photolysis of water vapor at λ ∼ 112.8 nm represents another source of exceptionally highly vibrationally excited OH(X) radicals, with a nascent vibrational state population distribution that maximizes at v = 9 and extends to at least the v = 15 level. Atmospheric chemistry modeling indicates that OH(X, high v) radicals from H2O photolysis might be detectable in the OH Meinel band dayglow in the upper atmosphere of Earth and should dominate the corresponding emission from the Martian atmosphere. VUV photolysis of H2O also produces electronically excited OH(A) radicals, and simultaneous detection of emissions from OH(X, high v) and OH(A) is shown to offer a route to identifying high-oxygen exoplanetary atmospheres.

11.
J Geophys Res Atmos ; 124(4): 2318-2335, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30984484

RESUMO

Very short-lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2-dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high-altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid-2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long-lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year-to-year growth rates are variable and were small or negative in the period 2015-2017. Whether this is a transient effect, or longer-term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004-2017) is -5.2% per decade with VSLS included, in good agreement to ACE satellite data (-4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid-2000s.

12.
Nat Commun ; 9(1): 206, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335470

RESUMO

The Montreal Protocol has succeeded in limiting major ozone-depleting substance emissions, and consequently stratospheric ozone concentrations are expected to recover this century. However, there is a large uncertainty in the rate of regional ozone recovery in the Northern Hemisphere. Here we identify a Eurasia-North America dipole mode in the total column ozone over the Northern Hemisphere, showing negative and positive total column ozone anomaly centres over Eurasia and North America, respectively. The positive trend of this mode explains an enhanced total column ozone decline over the Eurasian continent in the past three decades, which is closely related to the polar vortex shift towards Eurasia. Multiple chemistry-climate-model simulations indicate that the positive Eurasia-North America dipole trend in late winter is likely to continue in the near future. Our findings suggest that the anticipated ozone recovery in late winter will be sensitive not only to the ozone-depleting substance decline but also to the polar vortex changes, and could be substantially delayed in some regions of the Northern Hemisphere extratropics.

13.
J Geophys Res Atmos ; 121(7): 3718-3728, 2016 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-27668138

RESUMO

Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere/lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO, SiO2, and Si+. Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two-step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry-climate model. The vertical profiles of Si+ and the Si+/Fe+ ratio are shown to be in good agreement with rocket-borne mass spectrometric measurements between 90 and 110 km. Si+ has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on their relative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA