Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 21(5): 353-364, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38560919

RESUMO

Structural firefighters are exposed to a complex set of contaminants and combustion byproducts, including volatile organic compounds (VOCs). Additionally, recent studies have found structural firefighters' skin may be exposed to multiple chemical compounds via permeation or penetration of chemical byproducts through or around personal protective equipment (PPE). This mannequin-based study evaluated the effectiveness of four different PPE conditions with varying contamination control measures (incorporating PPE interface design features and particulate blocking materials) to protect against ingress of several VOCs in a smoke exposure chamber. We also investigated the effectiveness of long-sleeve base layer clothing to provide additional protection against skin contamination. Outside gear air concentrations were measured from within the smoke exposure chamber at the breathing zone, abdomen, and thigh heights. Personal air concentrations were collected from mannequins under PPE at the same general heights and under the base layer at abdomen and thigh heights. Sampled contaminants included benzene, toluene, styrene, and naphthalene. Results suggest that VOCs can readily penetrate the ensembles. Workplace protection factors (WPFs) were near one for benzene and toluene and increased with increasing molecular weight of the contaminants. WPFs were generally lower under hoods and jackets compared to under pants. For all PPE conditions, the pants appeared to provide the greatest overall protection against ingress of VOCs, but this may be due in part to the lower air concentrations toward the floor (and cuffs of pants) relative to the thigh-height outside gear concentrations used in calculating the WPFs. Providing added interface control measures and adding particulate-blocking materials appeared to provide a protective benefit against less-volatile chemicals, like naphthalene and styrene.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Naftalenos , Exposição Ocupacional , Roupa de Proteção , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Humanos , Benzeno/análise , Tolueno/análise , Equipamento de Proteção Individual , Estireno/análise , Manequins , Fumaça/análise , Local de Trabalho
2.
J Occup Environ Hyg ; 19(9): 538-557, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853136

RESUMO

The international fire service community is actively engaged in a wide range of activities focused on development, testing, and implementation of effective approaches to reduce exposure to contaminants and the related cancer risk. However, these activities are often viewed independent of each other and in the absence of the larger overall effort of occupational health risk mitigation. This narrative review synthesizes the current research on fire service contamination control in the context of the National Institute for Occupational Safety and Health (NIOSH) Hierarchy of Controls, a framework that supports decision making around implementing feasible and effective control solutions in occupational settings. Using this approach, we identify evidence-based measures that have been investigated and that can be implemented to protect firefighters during an emergency response, in the fire apparatus and at the fire station, and identify several knowledge gaps that remain. While a great deal of research and development has been focused on improving personal protective equipment for the various risks faced by the fire service, these measures are considered less effective. Administrative and engineering controls that can be used during and after the firefight have also received increased research interest in recent years. However, less research and development have been focused on higher level control measures such as engineering, substitution, and elimination, which may be the most effective, but are challenging to implement. A comprehensive approach that considers each level of control and how it can be implemented, and that is mindful of the need to balance contamination risk reduction against the fire service mission to save lives and protect property, is likely to be the most effective.


Assuntos
Bombeiros , Neoplasias , Exposição Ocupacional , Saúde Ocupacional , Contaminação de Medicamentos , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Equipamento de Proteção Individual
3.
J Occup Environ Hyg ; 19(1): 35-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762010

RESUMO

Fire investigators may be occupationally exposed to many of the same compounds as the more widely studied fire suppression members of the fire service but are often tasked with working in a given exposure for longer periods ranging from hours to multiple days and may do so with limited personal protective equipment. In this study, we characterize the area air concentrations of contaminants during post-fire investigation of controlled residential fires with furnishings common to current bedroom, kitchen and living room fires in the United States. Area air sampling was conducted during different investigation phases including when investigations might be conducted immediately after fire suppression and extended out to 5 days after the fire. Airborne particulate over a wide range of dimensions, including sub-micron particles, were elevated to potentially unhealthy levels (based on air quality index) when averaged over a 60 min investigation period shortly after fire suppression with median PM2.5 levels over 100 µg/m3 (range 16-498 µg/m3) and median peak transient concentrations of 1,090 µg/m3 (range 200-23,700 µg/m3) during drywall removal or shoveling activities. Additionally, airborne aldehyde concentrations were elevated compared to volatile organic compounds with peak values of formaldehyde exceeding NIOSH ceiling limits during the earliest investigation periods (median 356 µg/m3, range: 140-775 µg/m3) and occasionally 1 day post-fire when the structure was boarded up before subsequent investigation activities. These results highlight the need to protect investigators' airways from particulates when fire investigation activities are conducted as well as during post-fire reconstruction activities. Additionally, vapor protection from formaldehyde should be strongly considered at least through investigations occurring 3 days after the fire and personal formaldehyde air monitoring is recommended during investigations.


Assuntos
Poluentes Ocupacionais do Ar , Compostos Orgânicos Voláteis , Poluentes Ocupacionais do Ar/análise , Poeira , Formaldeído , Gases/análise , Equipamento de Proteção Individual , Estados Unidos , Compostos Orgânicos Voláteis/análise
4.
Vasc Med ; 26(3): 240-246, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33606968

RESUMO

Firefighting is associated with an increased risk for a cardiovascular (CV) event, likely due to increased CV strain. The increase in CV strain during firefighting can be attributed to the interaction of several factors such as the strenuous physical demand, sympathetic nervous system activation, increased thermal burden, and the environmental exposure to smoke pollutants. Characterizing the impact of varying thermal burden and pollutant exposure on hemodynamics may help understand the CV burden experienced during firefighting. The purpose of this study was to examine the hemodynamic response of firefighters to training environments created by pallets and straw; oriented strand board (OSB); or simulated fire/smoke (fog). Twenty-three firefighters had brachial blood pressure measured and central blood pressure and hemodynamics estimated from the pressure waveform at baseline, and immediately and 30 minutes after each scenario. The training environment did not influence the hemodynamic response over time (interaction, p > 0.05); however, OSB scenarios resulted in higher pulse wave velocity and blood pressure (environment, p < 0.05). In conclusion, conducting OSB training scenarios appears to create the largest arterial burden in firefighters compared to other scenarios in this study. Environmental thermal burden in combination with the strenuous exercise, and psychological and environmental stress placed on firefighters should be considered when designing fire training scenarios and evaluating CV risk.


Assuntos
Bombeiros , Incêndios , Exercício Físico , Bombeiros/educação , Hemodinâmica , Humanos , Análise de Onda de Pulso
5.
Ergonomics ; 64(6): 755-767, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33393449

RESUMO

Firefighter hoods must provide protection from elevated temperatures and products of combustion (e.g. particulate) while simultaneously being wearable (comfortable and not interfering with firefighting activities). The purpose of this study was to quantify the impact of (1) hood design (traditional knit hood vs particulate-blocking hood), (2) repeated laundering, and (3) hood removal method (traditional vs overhead doffing) on (a) protection from soot contamination on the neck, (b) heat stress and (c) wearability measures. Using a fireground exposure simulator, 24 firefighters performed firefighting activities in realistic smoke and heat conditions using a new knit hood, new particulate-blocking hood and laundered particulate-blocking hood. Overall, soot contamination levels measured from neck skin were lower when wearing the laundered particulate-blocking hoods compared to new knit hoods, and when using the overhead hood removal process. No significant differences in skin temperature, core temperature, heart rate or wearability measures were found between the hood conditions. Practitioner Summary: The addition of a particulate-blocking layer to firefighters' traditional two-ply hood was found to reduce the PAH contamination reaching the neck but did not affect heat stress measurements or thermal perceptions. Modifying the process for hood removal resulted in a larger reduction in neck skin contamination than design modification. Abbreviations: ANOVA: analysis of variance; B: new particulate-blocking hood and PPE (PPE configuration); FES: fireground exposure simulator; GI: gastrointestinal; K: new knit hood and PPE (PPE configuration); L: laundered particulate-blocking hood and PPE (PPE configuration); LOD: limit of detection; MLE: maximum likelihood estimation; NFPA: National fire protection association; PAH: polycyclic aromatic hydrocarbon; PPE: personal protective equipment; SCBA: self-contained breathing apparatus; THL: total heat loss; TPP: thermal protective performance.


Assuntos
Bombeiros , Lavanderia , Exposição Ocupacional , Resposta ao Choque Térmico , Humanos , Exposição Ocupacional/análise , Equipamento de Proteção Individual , Fumaça/efeitos adversos
6.
J Occup Environ Hyg ; 17(11-12): 505-514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32990508

RESUMO

As the Fire Service becomes more aware of the potential health effects from occupational exposure to hazardous contaminants, personal protective equipment (PPE) manufacturers, and fire departments have responded by developing and implementing improved means of firefighter protection, including more frequent laundering of PPE after exposures. While laboratory testing of new PPE designs and the effect of laundering on PPE fabric provides a useful way to evaluate these approaches, laboratory scale testing does not necessarily translate to full garment protection. Utilizing a fireground smoke exposure simulator, along with air and/or filter-substrate sampling for polycyclic aromatic hydrocarbons (PAHs) and benzene, this pilot study tested the chemical-protective capabilities of firefighting PPE of different designs (knit hood vs. particulate-blocking hood, turnout jacket with zipper closure vs. hook & dee closure), including the impact of repeatedly exposing and cleaning (through laundering or decontamination on-scene) PPE 40 times. Overall, PAH contamination on filters under hoods in the neck region were higher (median PAHs = 14.7 µg) than samples taken under jackets in the chest region (median PAHs = 7.05 µg). PAH levels measured under particulate-blocking hoods were lower than levels found under knit hoods. Similarly, zippered closures were found to provide a greater reduction in PAHs compared to hook & dee closures. However, neither design element completely eliminated contaminant ingress. Measurements for benzene under turnout jackets were similar to ambient chamber air concentrations, indicating little to no attenuation from the PPE. The effect of laundering or on-scene decontamination on contaminant breakthrough appeared to depend on the type of contaminant. Benzene breakthrough was negatively associated with laundering, while PAH breakthrough was positively associated. More research is needed to identify PPE features that reduce breakthrough, how targeted changes impact exposures, and how fireground exposures relate to biological absorption of contaminants.


Assuntos
Bombeiros , Lavanderia/métodos , Roupa de Proteção , Fumaça , Poluentes Ocupacionais do Ar , Benzeno/análise , Manequins , Exposição Ocupacional/prevenção & controle , Projetos Piloto , Hidrocarbonetos Policíclicos Aromáticos/análise
7.
J Toxicol Environ Health A ; 82(4): 244-260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30907277

RESUMO

A non-targeted analysis workflow was applied to analyze exhaled breath samples collected from firefighters pre- and post-structural fire suppression. Breath samples from firefighters functioning in attack and search positions were examined for target and non-target compounds in automated thermal desorption-GC/MS (ATD-GC/MS) selected ion monitoring (SIM)/scan mode and reviewed for prominent chemicals. Targeted chemicals included products of combustion such as benzene, toluene, xylenes, and polycyclic aromatic hydrocarbons (PAH) that serve as a standard assessment of exposure. Sixty unique chemical features representative of exogenous chemicals and endogenous compounds, including single-ring aromatics, polynuclear aromatic hydrocarbons, volatile sulfur-containing compounds, aldehydes, alkanes, and alkenes were identified using the non-targeted analysis workflow. Fifty-seven out of 60 non-targeted features changed by at least 50% from pre- to post-fire suppression activity in at least one subject, and 7 non-targeted features were found to exhibit significantly increased or decreased concentrations for all subjects as a group. This study is important for (1) alerting the firefighter community to potential new exposures, (2) expanding the current targeted list of toxicants, and (3) finding biomarkers of response to firefighting activity as reflected by changes in endogenous compounds. Data demonstrate that there are non-targeted compounds in firefighters' breath that are indicative of environmental exposure despite the use of protective gear, and this information may be further utilized to improve the effectiveness of personal protective equipment.


Assuntos
Poluentes Ocupacionais do Ar/análise , Biomarcadores/análise , Testes Respiratórios , Bombeiros , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos Voláteis/análise , Adulto , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Occup Environ Hyg ; 16(8): 532-543, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31169466

RESUMO

Fire training may expose firefighters and instructors to hazardous airborne chemicals that vary by the training fuel. We conducted area and personal air sampling during three instructional scenarios per day involving the burning of two types (designated as alpha and bravo) of oriented strand board (OSB), pallet and straw, or the use of simulated smoke, over a period of 5 days. Twenty-four firefighters and ten instructors participated. Firefighters participated in each scenario once (separated by about 48 hr) and instructors supervised three training exercise per scenarios (completed in 1 day). Personal air samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and hydrogen cyanide during live-fire scenarios (excluding simulated smoke). Area air samples were analyzed for acid gases, aldehydes, isocyanates, and VOCs for all scenarios. For the live-fire scenarios, median personal air concentrations of benzene and PAHs exceeded applicable short-term exposure limits and were higher among firefighters than instructors. When comparing results by type of fuel, personal air concentrations of benzene and PAHs were higher for bravo OSB compared to other fuels. Median area air concentrations of aldehydes and isocyanates were also highest during the bravo OSB scenario, while pallet and straw produced the highest median concentrations of certain VOCs and acid gases. These results suggest usage of self-contained breathing apparatus (SCBA) by both instructors and firefighters is essential during training fires to reduce potential inhalation exposure. Efforts should be taken to clean skin and clothing as soon as possible after live-fire training to limit dermal absorption as well.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bombeiros/educação , Exposição Ocupacional/análise , Fumaça , Adulto , Benzeno , Feminino , Gases/análise , Humanos , Cianeto de Hidrogênio/análise , Masculino , Pessoa de Meia-Idade , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos Voláteis/análise
9.
J Occup Environ Hyg ; 16(5): 355-366, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30932751

RESUMO

Biomarker measurements can provide unambiguous evidence of environmental exposures as well as the resultant biological responses. Firefighters have a high rate of occupational cancer incidence, which has been proposed to be linked in part to their increased environmental exposure to byproducts of combustion and contaminants produced during fire responses. In this article, the uptake and elimination of targeted volatile organic compounds were investigated by collecting the exhaled breath of firefighters on sorbent tubes before and after controlled structure burns and analyzing samples using automated thermal desorption-gas chromatography (ATD-GC/MS). Volatile organic compounds exposure was assessed by grouping the data according to firefighting job positions as well as visualizing the data at the level of the individual firefighter to determine which individuals had expected exposure responses. When data were assessed at the group level, benzene concentrations were found to be elevated post-exposure in both fire attack, victim search, and outside ventilation firefighting positions. However, the results of the data analysis at the individual level indicate that certain firefighters may be more susceptible to post-exposure volatile organic compounds increases than others, and this should be considered when assessing the effectiveness of firefighting protective gear. Although this work focuses on firefighting activity, the results can be translated to potential human health and ecological effects from building and forest fires.


Assuntos
Testes Respiratórios , Bombeiros , Incêndios , Exposição Ocupacional/análise , Adulto , Poluentes Ocupacionais do Ar/análise , Benzeno/análise , Biomarcadores/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Orgânicos Voláteis/análise
10.
J Occup Environ Hyg ; 16(2): 129-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30427284

RESUMO

Firefighters are occupationally exposed to products of combustion containing polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs), potentially contributing to their increased risk for certain cancers. Personal protective equipment (PPE), including firefighter hoods, helps to reduce firefighters' exposure to toxic substances during fire responses by providing a layer of material on which contaminants deposit prior to reaching the firefighters skin. However, over time hoods that retain some contamination may actually contribute to firefighters' systemic dose. We investigated the effectiveness of laundering to reduce or remove contamination on the hoods, specifically PAHs and three classes of FRs: polybrominated diphenyl ethers (PBDEs), non-PBDE flame retardants (NPBFRs), and organophosphate flame retardants (OPFRs). Participants in the study were grouped into crews of 12 firefighters who worked in pairs by job assignment while responding to controlled fires in a single-family residential structure. For each pair of firefighters, one hood was laundered after every scenario and one was not. Bulk samples of the routinely laundered and unlaundered hoods from five pairs of firefighters were collected and analyzed. Residual levels of OPFRs, NPBFRs, and PAHs were lower in the routinely laundered hoods, with total levels of each class of chemicals being 56-81% lower, on average, than the unlaundered hoods. PBDEs, on average, were 43% higher in the laundered hoods, most likely from cross contamination. After this initial testing, four of the five unlaundered exposed hoods were subsequently laundered with other heavily exposed (unlaundered) and unexposed (new) hoods. Post-laundering evaluation of these hoods revealed increased levels of PBDEs, NPBFRs, and OPFRs in both previously exposed and unexposed hoods, indicating cross contamination. For PAHs, there was little evidence of cross contamination and the exposed hoods were significantly less contaminated after laundering (76% reduction; p = 0.011). Further research is needed to understand how residual contamination on hoods could contribute to firefighters' systemic exposures.


Assuntos
Bombeiros , Retardadores de Chama/análise , Lavanderia , Hidrocarbonetos Policíclicos Aromáticos/análise , Roupa de Proteção , Incêndios , Éteres Difenil Halogenados/análise , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle
11.
J Occup Environ Hyg ; 15(5): 399-412, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29494297

RESUMO

In this study, we characterize the area and personal air concentrations of combustion byproducts produced during controlled residential fires with furnishings common in 21st century single family structures. Area air measurements were collected from the structure during active fire and overhaul (post suppression) and on the fireground where personnel were operating without any respiratory protection. Personal air measurements were collected from firefighters assigned to fire attack, victim search, overhaul, outside ventilation, and command/pump operator positions. Two different fire attack tactics were conducted for the fires (6 interior and 6 transitional) and exposures were compared between the tactics. For each of the 12 fires, firefighters were paired up to conduct each job assignment, except for overhaul that was conducted by 4 firefighters. Sampled compounds included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, e.g., benzene), hydrogen cyanide (HCN), and particulate (area air sampling only). Median personal air concentrations for the attack and search firefighters were generally well above applicable short-term occupational exposure limits, with the exception of HCN measured from search firefighters. Area air concentrations of all measured compounds decreased after suppression. Personal air concentrations of total PAHs and benzene measured from some overhaul firefighters exceeded exposure limits. Median personal air concentrations of HCN (16,300 ppb) exceeded the exposure limit for outside vent firefighters, with maximum levels (72,900 ppb) higher than the immediately dangerous to life and health (IDLH) level. Median air concentrations on the fireground (including particle count) were above background levels and highest when collected downwind of the structure and when ground-level smoke was the heaviest. No statistically significant differences in personal air concentrations were found between the 2 attack tactics. The results underscore the importance of wearing self-contained breathing apparatus when conducting overhaul or outside ventilation activities. Firefighters should also try to establish command upwind of the structure fire, and if this cannot be done, respiratory protection should be considered.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bombeiros , Incêndios , Exposição Ocupacional/análise , Humanos , Cianeto de Hidrogênio/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Fumaça , Compostos Orgânicos Voláteis/análise
12.
Ergonomics ; 61(3): 404-419, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28737481

RESUMO

Firefighters' thermal burden is generally attributed to high heat loads from the fire and metabolic heat generation, which may vary between job assignments and suppression tactic employed. Utilising a full-sized residential structure, firefighters were deployed in six job assignments utilising two attack tactics (1. Water applied from the interior, or 2. Exterior water application before transitioning to the interior). Environmental temperatures decreased after water application, but more rapidly with transitional attack. Local ambient temperatures for inside operation firefighters were higher than other positions (average ~10-30 °C). Rapid elevations in skin temperature were found for all job assignments other than outside command. Neck skin temperatures for inside attack firefighters were ~0.5 °C lower when the transitional tactic was employed. Significantly higher core temperatures were measured for the outside ventilation and overhaul positions than the inside positions (~0.6-0.9 °C). Firefighters working at all fireground positions must be monitored and relieved based on intensity and duration. Practitioner Summary: Testing was done to characterise the thermal burden experienced by firefighters in different job assignments who responded to controlled residential fires (with typical furnishings) using two tactics. Ambient, skin and core temperatures varied based on job assignment and tactic employed, with rapid elevations in core temperature in many roles.


Assuntos
Temperatura Corporal , Bombeiros , Temperatura Alta , Esforço Físico/fisiologia , Adulto , Feminino , Incêndios , Humanos , Masculino , Pessoa de Meia-Idade , Pescoço , Saúde Ocupacional , Temperatura Cutânea
14.
J Occup Environ Hyg ; 14(10): 801-814, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28636458

RESUMO

Firefighters' skin may be exposed to chemicals via permeation/penetration of combustion byproducts through or around personal protective equipment (PPE) or from the cross-transfer of contaminants on PPE to the skin. Additionally, volatile contaminants can evaporate from PPE following a response and be inhaled by firefighters. Using polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) as respective markers for non-volatile and volatile substances, we investigated the contamination of firefighters' turnout gear and skin following controlled residential fire responses. Participants were grouped into three crews of twelve firefighters. Each crew was deployed to a fire scenario (one per day, four total) and then paired up to complete six fireground job assignments. Wipe sampling of the exterior of the turnout gear was conducted pre- and post-fire. Wipe samples were also collected from a subset of the gear after field decontamination. VOCs off-gassing from gear were also measured pre-fire, post-fire, and post-decon. Wipe sampling of the firefighters' hands and neck was conducted pre- and post-fire. Additional wipes were collected after cleaning neck skin. PAH levels on turnout gear increased after each response and were greatest for gear worn by firefighters assigned to fire attack and to search and rescue activities. Field decontamination using dish soap, water, and scrubbing was able to reduce PAH contamination on turnout jackets by a median of 85%. Off-gassing VOC levels increased post-fire and then decreased 17-36 min later regardless of whether field decontamination was performed. Median post-fire PAH levels on the neck were near or below the limit of detection (< 24 micrograms per square meter [µg/m2]) for all positions. For firefighters assigned to attack, search, and outside ventilation, the 75th percentile values on the neck were 152, 71.7, and 39.3 µg/m2, respectively. Firefighters assigned to attack and search had higher post-fire median hand contamination (135 and 226 µg/m2, respectively) than other positions (< 10.5 µg/m2). Cleansing wipes were able to reduce PAH contamination on neck skin by a median of 54%.


Assuntos
Descontaminação/métodos , Bombeiros , Incêndios , Exposição Ocupacional/prevenção & controle , Equipamento de Proteção Individual , Poluentes Ocupacionais do Ar/análise , Feminino , Gases/análise , Humanos , Masculino , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Pele/química , Compostos Orgânicos Voláteis/análise
15.
Am J Ind Med ; 59(8): 630-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27346061

RESUMO

BACKGROUND: Mortality among 4,545 toluene diisocyante (TDI)-exposed workers was updated through 2011. The primary outcome of interest was lung cancer. METHODS: Life table analyses, including internal analyses by exposure duration and cumulative TDI exposure, were conducted. RESULTS: Compared with the US population, all cause and all cancer mortality was increased. Lung cancer mortality was increased but was not associated with exposure duration or cumulative TDI exposure. In post hoc analyses, lung cancer mortality was associated with employment duration in finishing jobs, but not in finishing jobs involving cutting polyurethane foam. CONCLUSIONS: Dermal exposure, in contrast to inhalational exposure, to TDI is expected to be greater in finishing jobs and may play a role in the observed increase in lung cancer mortality. Limitations include the lack of smoking data, uncertainty in the exposure estimates, and exposure estimates that reflected inhalational exposure only. Am. J. Ind. Med. 59:630-643, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Indústria Química/estatística & dados numéricos , Doenças Profissionais/mortalidade , Exposição Ocupacional/estatística & dados numéricos , Poliuretanos , Tolueno 2,4-Di-Isocianato/toxicidade , Adulto , Idoso , Feminino , Seguimentos , Humanos , Tábuas de Vida , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/induzido quimicamente , Exposição Ocupacional/análise , Fatores de Tempo , Estados Unidos/epidemiologia
16.
J Occup Environ Hyg ; 12(6): 404-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25751596

RESUMO

Firefighters' personal protective equipment (PPE) ensembles will become contaminated with various compounds during firefighting. Some of these compounds will off-gas following a response, which could result in inhalation exposure. This study was conducted to determine the magnitude and composition of volatile organic compounds (VOCs) generated during controlled structure burns that subsequently off-gassed from the firefighters' PPE, and were systemically absorbed and exhaled in firefighters' breath. Three crews of five firefighters performed entry, suppression, and overhaul during a controlled burn. We used evacuated canisters to sample air inside the burn structure during active fire and overhaul. After each burn, we placed PPE from two firefighters inside clean enclosures and sampled the air using evacuated canisters over 15 min. Firefighters' exhaled breath was collected ∼1 hr before and 4-14 min after each burn. Using gas chromatography/mass spectrometry, the evacuated canister samples were analyzed for 64 VOCs and the exhaled breath samples were analyzed for benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). Fourteen of the same VOCs were detected off-gassing from PPE in 50% or more of the samples. Compared to background levels, we measured >5 fold increases in mean off-gas concentrations of styrene, benzene, 1,4-dichlorobenzene, acetone, and cyclohexane. Several of the compounds detected off-gassing from PPE were also measured at concentrations above background during active fire and overhaul, including benzene, propene, and styrene. The overhaul and off-gas air concentrations were well below applicable short-term occupational exposure limits. Compared to pre-burn levels, we measured >2 fold increases in mean breath concentrations of benzene, toluene, and styrene after the burns. Air concentrations of BTEXS measured off-gassing from firefighters' used PPE and in firefighters' post-burn exhaled breath were significantly correlated. The firefighters may have absorbed BTEXS through both the dermal route (during firefighting) and inhalation route (from off-gassing PPE after firefighting). Firefighters should be made aware of the potential for inhalation exposure when doffing and traveling in confined vehicles with contaminated PPE and take measures to minimize this exposure pathway.


Assuntos
Poluentes Ocupacionais do Ar/análise , Derivados de Benzeno/análise , Testes Respiratórios , Bombeiros , Exposição por Inalação/análise , Exposição Ocupacional/análise , Equipamento de Proteção Individual , Compostos Orgânicos Voláteis/análise , Incêndios , Humanos , Absorção Cutânea
17.
Ann Occup Hyg ; 58(7): 830-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24906357

RESUMO

Turnout gear provides protection against dermal exposure to contaminants during firefighting; however, the level of protection is unknown. We explored the dermal contribution to the systemic dose of polycyclic aromatic hydrocarbons (PAHs) and other aromatic hydrocarbons in firefighters during suppression and overhaul of controlled structure burns. The study was organized into two rounds, three controlled burns per round, and five firefighters per burn. The firefighters wore new or laundered turnout gear tested before each burn to ensure lack of PAH contamination. To ensure that any increase in systemic PAH levels after the burn was the result of dermal rather than inhalation exposure, the firefighters did not remove their self-contained breathing apparatus until overhaul was completed and they were >30 m upwind from the burn structure. Specimens were collected before and at intervals after the burn for biomarker analysis. Urine was analyzed for phenanthrene equivalents using enzyme-linked immunosorbent assay and a benzene metabolite (s-phenylmercapturic acid) using liquid chromatography/tandem mass spectrometry; both were adjusted by creatinine. Exhaled breath collected on thermal desorption tubes was analyzed for PAHs and other aromatic hydrocarbons using gas chromatography/mass spectrometry. We collected personal air samples during the burn and skin wipe samples (corn oil medium) on several body sites before and after the burn. The air and wipe samples were analyzed for PAHs using a liquid chromatography with photodiode array detection. We explored possible changes in external exposures or biomarkers over time and the relationships between these variables using non-parametric sign tests and Spearman tests, respectively. We found significantly elevated (P < 0.05) post-exposure breath concentrations of benzene compared with pre-exposure concentrations for both rounds. We also found significantly elevated post-exposure levels of PAHs on the neck compared with pre-exposure levels for round 1. We found statistically significant positive correlations between external exposures (i.e. personal air concentrations of PAHs) and biomarkers (i.e. change in urinary PAH metabolite levels in round 1 and change in breath concentrations of benzene in round 2). The results suggest that firefighters wearing full protective ensembles absorbed combustion products into their bodies. The PAHs most likely entered firefighters' bodies through their skin, with the neck being the primary site of exposure and absorption due to the lower level of dermal protection afforded by hoods. Aromatic hydrocarbons could have been absorbed dermally during firefighting or inhaled during the doffing of gear that was off-gassing contaminants.


Assuntos
Benzeno/análise , Bombeiros , Incêndios , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ocupacionais do Ar/análise , Benzeno/toxicidade , Biomarcadores/urina , Monitoramento Ambiental/métodos , Humanos , Exposição por Inalação/análise , Exposição Ocupacional/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Roupa de Proteção , Absorção Cutânea
18.
J Occup Environ Hyg ; 11(11): 695-705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824046

RESUMO

Automatic dispensing machines (ADMs) used in pharmacies concentrate and dispense large volumes of pharmaceuticals, including uncoated tablets that can shed dust. We evaluated 43 employees' exposures to pharmaceutical dust at three pharmacies where ADMs were used. We used an optical particle counter to identify tasks that generated pharmaceutical dust. We collected 72 inhalable dust air samples in or near the employees' breathing zones. In addition to gravimetric analysis, our contract laboratory used internal methods involving liquid chromatography to analyze these samples for active pharmaceutical ingredients (APIs) and/or lactose, an inactive filler in tablets. We had to choose samples for these additional analyses because many methods used different extraction solvents. We selected 57 samples for analysis of lactose. We used real-time particle monitoring results, observations, and information from employees on the dustiness of pharmaceuticals to select 28 samples (including 13 samples that were analyzed for lactose) for analysis of specific APIs. Pharmaceutical dust was generated during a variety of tasks like emptying and refilling of ADM canisters. Using compressed air to clean canisters and manual count machines produced the overall highest peak number concentrations (19,000-580,000 particles/L) of smallest particles (count median aerodynamic diameter ≤ 2 µm). Employees who refilled, cleaned, or repaired ADM canisters, or hand filled prescriptions were exposed to higher median air concentrations of lactose (5.0-12 µg/m(3)) than employees who did other jobs (0.04-1.3 µg/m(3)), such as administrative/office work, labeling/packaging, and verifying prescriptions. We detected 10 APIs in air, including lisinopril, a drug prescribed for high blood pressure, levothyroxine, a drug prescribed for hypothyroidism, and methotrexate, a hazardous drug prescribed for cancer and other disorders. Three air concentrations of lisinopril (1.8-2.7 µg/m(3)) exceeded the lower bound of the manufacturer's hazard control band (1-10 µg/m(3)). All other API air concentrations were below applicable occupational exposure limits. Our findings indicate that some pharmacy employees are exposed to multiple APIs and that measures are needed to control those exposures.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Exposição por Inalação/análise , Exposição Ocupacional/análise , Preparações Farmacêuticas/análise , Farmácias/organização & administração , Farmácia/instrumentação , Monitoramento Ambiental/métodos , Humanos , Farmácia/organização & administração , Análise e Desempenho de Tarefas , Estados Unidos
19.
Fire Technol ; 59(6): 3255-3282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38650825

RESUMO

Firefighters' or instructors' exposure to airborne chemicals during live-fire training may depend on fuels being burned, fuel orientation and participants' location within the structure. This study was designed to evaluate the impact of different control measures on exposure risk to combustion byproducts during fire dynamics training where fuel packages are mounted at or near the ceiling. These measures included substitution of training fuels (low density wood fiberboard, oriented strand board (OSB), pallets, particle board, plywood) and adoption of engineering controls such as changing the location of the instructor and students using the structure. Experiments were conducted for two different training durations: the typical six ventilation cycle (6-cycle) and a shorter three ventilation cycle (3-cycle) with a subset of training fuels. In Part A of this series, we characterized the fire dynamics within the structure, including the ability of each fuel to provide an environment that achieves the training objectives. Here, in Part B, airborne chemical concentrations are reported at the location where fire instructors would typically be operating. We hypothesized that utilizing a training fuel package with solid wood pallets would result in lower concentrations of airborne contaminants at the rear instructor location than wood-based sheet products containing additional resins and/or waxes. In the 6-cycle experiments (at the rear instructor location), OSB-fueled fires produced the highest median concentrations of benzene and 1,3 butadiene, plywood-fueled fires produced the highest total polycyclic aromatic hydrocarbon (PAH) concentrations, particle board-fueled fires produced the highest methyl isocyanate concentrations, and pallet-fueled fires produced the highest hydrogen chloride concentrations. All fuels other than particle board produced similarly high levels of formaldehyde at the rear instructor location. The OSB fuel package created the most consistent fire dynamics over 6-cycles, while fiberboard resulted in consistent fire dynamics only for the first three cycles. In the follow-on 3-cycle experiment, PAH, benzene, and aldehyde concentrations were similar for the OSB and fiberboard-fueled fires. Air sampling did not identify any clear differences between training fires from burning solid wood pallets and those that incorporate wood-based sheet products for this commonly employed fuel arrangement with fuels mounted high in the compartment. However, it was found that exposure can be reduced by moving firefighters and instructors lower in the compartment and/or by moving the instructor in charge of ventilation from the rear of the structure (where highest concentrations were consistently measured) to an outside position.

20.
Ann Work Expo Health ; 67(8): 1011-1017, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37597244

RESUMO

Wildland firefighters (WFFs) are exposed to many inhalation hazards working in the wildland fire environment. To assess occupational exposures and acute and subacute health effects among WFFs, the wildland firefighter exposure and health effects study collected data for a 2-year repeated measures study. This manuscript describes the exposure assessment from one Interagency Hotshot Crew (N = 19) conducted at a wildfire incident. Exposures to benzene, toluene, ethylbenzene, xylene isomers, formaldehyde, acetaldehyde, and naphthalene were measured through personal air sampling each work shift. Biological monitoring was done for creatinine-adjusted levoglucosan in urine pre- and post-shift. For 3 days sampling at the wildfire incident, benzene, toluene, ethylbenzene, xylene isomers (m and p, and o) exposure was highest on day 1 (geometric mean [GM] = 0.015, 0.042, 0.10, 0.42, and 0.15 ppm, respectively) when WFFs were not exposed to smoke but used chainsaws to remove vegetation and prepare fire suppression breaks. Exposure to formaldehyde and acetaldehyde was highest on day 2 (GM = 0.03 and 0.036 ppm, respectively) when the WFFs conducted a firing operation and were directly exposed to wildfire smoke. The greatest difference of pre- and post-shift levoglucosan concentrations were observed on day 3 (pre-shift: 9.7 and post-shift: 47 µg/mg creatinine) after WFFs conducted mop up (returned to partially burned area to extinguish any smoldering vegetation). Overall, 65% of paired samples (across all sample days) showed a post-shift increase in urinary levoglucosan and 5 firefighters were exposed to benzene at concentrations at or above the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit. Our findings further demonstrate that exposure to inhalation hazards is one of many risks that wildland firefighters experience while suppressing wildfires.


Assuntos
Bombeiros , Exposição Ocupacional , Incêndios Florestais , Humanos , Estados Unidos , Exposição Ocupacional/análise , Exposição por Inalação/análise , Creatinina/urina , Benzeno , Xilenos , Acetaldeído , Formaldeído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA