Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chemistry ; 29(58): e202301490, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37452643

RESUMO

Single-walled carbon nanotubes (SWNTs) present extraordinary mechanical properties, with Youngs' modulus>1 TPa and tensile strength>50 GPa; this makes them ideal candidates as fillers for the reinforcement of polymers. However, the performance of SWNTs in this field has fallen behind expectations. This is due to a combination of imperfect individualization of the SWNTs and poor load transfer from the polymer to the SWNTs. Here, we study the reinforcement of polymers of different chemical nature using mechanically interlocked derivatives of single-walled carbon nanotubes (MINTs). We compare the mechanical properties of fibers made of poly (methyl methacrylate) (PMMA) and polysulfone (PSU) and their composites made with pristine SWNTs, MINTs, and the corresponding supramolecular models. With very low loading of MINTs (0.01 % w/w), improvements of more than 100 % on Youngs Modulus and the tensile strength are observed for both the nonpolar aliphatic PMMA and the very polar aromatic PSU polymers, while pristine carbon nanotubes and the supramolecular nanofillers showed smaller reinforcement. These data, together with our previous report on the reinforcement of polystyrene (nonpolar and aromatic), indicate that derivatization of SWNTs as MINTs is a valid general strategy to optimize the interaction between SWNT fillers and the polymer matrix.

2.
Macromol Rapid Commun ; 40(19): e1900098, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31328312

RESUMO

The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3-butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution-cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Cristalização , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula
3.
Polymers (Basel) ; 16(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475402

RESUMO

Biocomposite films based on PLA reinforced with different ß-TCP contents (10%, 20%, and 25%wt.) were fabricated via solvent casting and immersed in SBF for 7, 14, and 21 days. The bioactivity, morphological, and thermal behavior of composites with immersion were studied using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, weight loss (WL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC). This broad analysis leads to a deeper understanding of the evolution of the polymer-filler interaction with the degradation of the biocomposites. The results showed that ß-TCP gradually evolved into carbonated hydroxyapatite as the immersion time increased. This evolution affected the interaction of ß-TCP with PLA. PLA and ß-TCP interactions differed from PLA and carbonated hydroxyapatite interactions. It was observed that ß-TCP inhibited PLA hydrolysis but accelerated the thermal degradation of the polymer. ß-TCP retarded the cold crystallization of PLA and hindered its crystallinity. However, after immersion in SBF, particles accelerated the cold crystallization of PLA. Therefore, considering the evolution of ß-TCP with immersion in SBF is crucial for an accurate analysis of the biocomposites' degradation. These findings enhance the comprehension of the degradation mechanism in PLA/ß-TCP, which is valuable for predicting the degradation performance of PLA/ß-TCP in medical applications.

4.
Pharmaceutics ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543199

RESUMO

In recent years, the rapid emergence of antibiotic-resistant bacteria has become a significant concern in the healthcare field, and although bactericidal dressings loaded with various classes of antibiotics have been used in clinics, in addition to other anti-infective strategies, this alarming issue necessitates the development of innovative strategies to combat bacterial infections and promote wound healing. Electrospinning technology has gained significant attention as a versatile method for fabricating advanced wound dressings with enhanced functionalities. This work is based on the generation of polyvinylpyrrolidone (PVP)-based dressings through electrospinning, using a DomoBIO4A bioprinter, and incorporating graphene oxide (GO)/zinc oxide (ZnO) nanocomposites as a potent antibacterial agent. GO and ZnO nanoparticles offer unique properties, including broad-spectrum antibacterial activity for improved wound healing capabilities. The synthesis process was performed in an inexpensive one-pot reaction, and the nanocomposites were thoroughly characterized using XRD, TEM, EDX, SEM, EDS, and TGA. The antibacterial activity of the dispersions was demonstrated against E. coli and B. subtilis, Gram-negative and Gram-positive bacteria, respectively, using the well diffusion method and the spread plate method. Bactericidal mats were synthesized in a rapid and cost-effective manner, and the fiber-based structure of the electrospun dressings was studied by SEM. Evaluations of their antibacterial efficacy against E. coli and B. subtilis were explored by the disk-diffusion method, revealing an outstanding antibacterial capacity, especially against the Gram-positive strain. Overall, the findings of this research contribute to the development of next-generation wound dressings that effectively combat bacterial infections and pave the way for advanced therapeutic interventions in the field of wound care.

5.
ACS Mater Lett ; 5(4): 1245-1255, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323142

RESUMO

Wound infection is inevitable in most patients suffering from extensive burns or chronic ulcers, and there is an urgent demand for the production of bactericidal dressings to be used as grafts to restore skin functionalities. In this context, the present study explores the fabrication of plasma-derived fibrin hydrogels containing bactericidal hybrids based on graphene oxide (GO). The hydrogels were fully characterized regarding gelation kinetics, mechanical properties, and internal hydrogel structures by disruptive cryo scanning electron microscopies (cryo-SEMs). The gelation kinetic experiments revealed an acceleration of the gel formation when GO was added to the hydrogels in a concentration of up to 0.2 mg/mL. The cryo-SEM studies showed up a decrease of the pore size when GO was added to the network, which agreed with a faster area contraction and a higher compression modulus of the hydrogels that contained GO, pointing out the critical structural role of the nanomaterial. Afterward, to study the bactericidal ability of the gels, GO was used as a carrier, loading streptomycin (STREP) on its surface. The loading content of the drug to form the hybrid (GO/STREP) resulted in 50.2% ± 4.7%, and the presence of the antibiotic was also demonstrated by Raman spectroscopy, Z-potential studies, and thermogravimetric analyses. The fibrin-derived hydrogels containing GO/STREP showed a dose-response behavior according to the bactericidal hybrid concentration and allowed a sustained release of the antibiotic at a programmed rate, leading to drug delivery over a prolonged period of time.

6.
Biosens Bioelectron ; 196: 113729, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736101

RESUMO

Herein, a novel molecularly imprinted polymer (MIP) based electrochemical sensor for the determination of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-RBD) has been developed. For this purpose, first, a macroporous gold screen-printed electrode (MP-Au-SPE) has been fabricated. The MIP was then synthesized on the surface of the MP-Au-SPE through the electro-polymerization of ortho-phenylenediamine in the presence of SARS-CoV-2-RBD molecules as matrix polymer, and template molecules, respectively. During the fabrication process, the SARS-CoV-2-RBD molecules were embedded in the polymer matrix. Subsequently, the template molecules were removed from the electrode by using alkaline ethanol. The template molecules removal was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance spectroscopy (ATR). The fabricated MIP film acted as an artificial recognition element for the measurement of SARS-CoV-2-RBD. The EIS technique was used for the measurement of the SARS-CoV-2-RBD in the saliva solution. The electron transfer resistance (Ret) of the MIP-based sensor in a ferri/ferrocyanide solution increased as the SARS-CoV-2-RBD concentration increased due to the occupation of the imprinted cavities by the SARS-CoV-2-RBD. The MIP-based sensor exhibited a good response to the SARS-CoV-2-RBD in the concentration range between 2.0 and 40.0 pg mL-1 with a limit of detection of 0.7 pg mL-1. The obtained results showed that the fabricated MIP sensor has high selectivity sensitivity, and stability.


Assuntos
Técnicas Biossensoriais , COVID-19 , Impressão Molecular , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Limite de Detecção , Polímeros Molecularmente Impressos , SARS-CoV-2
7.
Polymers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365591

RESUMO

The goal of producing polyetheretherketone/polyetherimide (PEEK/PEI) blends is to combine the outstanding properties that both polymers present separately. Despite being miscible polymers, it is possible to achieve PEEK/PEI multilayered blends in which PEEK crystallinity is not significantly inhibited, as opposed to conventional extruding processes that lead to homogeneous mixtures with total polymer chain interpenetration. This study investigated a 50/50 (volume fraction) PEEK/PEI multilayered polymer blend in which manufacturing parameters were tailored to simultaneously achieve PEEK-PEI adhesion while keeping PEEK crystallinity in order to optimize the mechanical properties of this heterogeneous polymer blend. The interface adhesion was characterized with the use of three-point bending tests, which proved that a processing temperature below the melting point of PEEK produced weak PEEK-PEI interfaces. Results from differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and X-ray diffraction analysis (XRD) showed that under a 350 °C consolidation temperature, there is a partial mixing of PEEK and PEI layers in the interface that provides good adhesion. The thickness of the mixed homogeneous region at this temperature exhibits reduced sensitivity to processing time, which ensures that both polymers essentially remain separate phases. This also entails that multilayered blends with good mechanical properties can be reliably produced with short manufacturing cycles. The combination of mechanical performance and potential joining capability supports their use in a wide range of applications in the automotive, marine, and aerospace industries.

8.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501504

RESUMO

The use of block copolymers as a sacrificial template has been demonstrated to be a powerful method for obtaining porous carbons as electrode materials in energy storage devices. In this work, a block copolymer of polystyrene and polyacrylonitrile (PS-b-PAN) has been used as a precursor to produce fibers by electrospinning and powdered carbons, showing high carbon yield (~50%) due to a low sacrificial block content (fPS ≈ 0.16). Both materials have been compared structurally (in addition to comparing their electrochemical behavior). The porous carbon fibers showed superior pore formation capability and exhibited a hierarchical porous structure, with small and large mesopores and a relatively high surface area (~492 m2/g) with a considerable quantity of O/N surface content, which translates into outstanding electrochemical performance with excellent cycle stability (close to 100% capacitance retention after 10,000 cycles) and high capacitance value (254 F/g measured at 1 A/g).

9.
Polymers (Basel) ; 12(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255165

RESUMO

Polyetheretherketone (PEEK)/polyetherimide (PEI) blends (50/50, v/v) keeping the crystal phase of PEEK have been manufactured by alternate PEEK/PEI layer stacking. This strategy avoided the complete miscibility of both polymers, keeping layers of PEEK and PEI unmixed along the sample thickness, as well as promoting the formation of a smooth interfacial layer where PEEK and PEI were mixed. The properties of this interface after processing at molten state and different times was studied by DSC, DMA, and X-Ray synchrotron. These techniques allowed monitoring the evolution of glass transition, where isolated Tg's for both pristine polymers were observed even after long processing time. PEEK crystallinity slightly decreased during manufacturing, whereas PEEK crystal parameters did not vary. These observations show that, although the interface-the zone where both polymers are mixed-grew, layers with pristine polymers remained even after prolonged processing time. The preservation of the PEEK crystallinity was also observed in the mechanical properties of the multilayer PEEK/PEI films, which were compared with pristine PEEK and PEI films. Multilayer samples processed for shorter times rendered higher young modulus, tensile strength, and strain at break.

10.
Heliyon ; 6(4): e03740, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32382670

RESUMO

Current studies on nanocomposites have focused on their multifunctional properties and their industrial production. In this work, polyetheretherketone (PEEK)/graphene nanoplate (GNP) composites were produced by a direct semi-industrial process. Different percentages of untreated GNP (1, 5, and 10 wt.%) were added to PEEK by employing melt-compounding followed by injection-moulding. Despite the semi-industrial approach used, the modulus, strength, and Poisson coefficient of the nanocomposites (1 and 5 wt.%) were not significantly affected by the addition of GNP. However, there was a slight decrease in the strength at 10 wt.% GNP. Our study also shows that the thermal conductivities of PEEK/GNP composites are up to 2.5 times higher than that of pure PEEK.

11.
ACS Appl Mater Interfaces ; 12(6): 7548-7556, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31967780

RESUMO

Three microporous organic frameworks (hereafter denoted as MPOF-Ads) based on a rigid adamantane core have been successfully synthesized via Sonogashira-Hagihara polycondensation coupling in high yields, 83.7-94.6%. The obtained amorphous MPOF-Ads networks have high Brunauer-Emmett-Teller surface areas (up to 737.3 m2 g-1), narrow pore size distribution (0.95-1.06 nm), and superior thermal (the initial decomposition temperature T5% under an N2 atmosphere can reach 410 °C) and chemical stability (no apparent degradation in common organic solvents or strong acid/base solutions after 7 days). At 273 K and 1.0 bar, these MPOF-Ads networks present good uptake capacities for small gas molecules (13.9 wt % CO2 and 1.66 wt % CH4) for which the presence of high surface area, predominant microporosity, and narrow pore size distribution are beneficial. In addition, the as-prepared MPOF-Ads networks possess moderate isosteric heats for CO2 (Qst = 19.5-30.3 kJ mol-1) and show desired CO2/N2 and CO2/CH4 selectivity (36.3-38.4 and 4.1-4.3 based on Henry's law and 17.88-24.92 and 4.24-5.70 based on ideal adsorbed solution theory, respectively). With the demonstrated properties, the synthesized MPOF-Ads networks display potential for small gas storage and separation that can be used in harsh environments because of their superior physical and chemical stability.

12.
Materials (Basel) ; 13(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824969

RESUMO

A novel halogen-free flame retardant containing sulfonamide, 1,3,5,7-tetrakis (phenyl-4-sulfonamide) adamantane (FRSN) was synthesized and used for improving the flame retardancy of largely used polycarbonate (PC). The flame-retardant properties of the composites with incorporation of varied amounts of FRSN were analyzed by techniques including limited oxygen index, UL 94 vertical burning, and cone calorimeter tests. The new FR system with sulfur and nitrogen elements showed effective improvements in PC's flame retardancy: the LOI value of the modified PC increased significantly, smoke emission suppressed, and UL 94 V-0 achieved. Typically, the composite with only 0.08 wt% of FRSN added (an ultralow content) can increase the limiting oxygen index (LOI) value to 33.7% and classified as UL 94 V-0 rating. Furthermore, the mechanical properties and SEM morphology indicated that the FRSN has very good compatibility with PC matrix, which, in turn, is beneficial to the property enhancement. Finally, the analysis of sample residues after burning tests showed that a high portion of char was formed, contributing to the PC burning protection. This synthesized flame retardant provides a new way of improving PC's flame retardancy and its mechanical property.

13.
Nat Commun ; 11(1): 879, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054851

RESUMO

Bio-hybrid light-emitting diodes (Bio-HLEDs) based on color down-converting filters with fluorescent proteins (FPs) have achieved moderate efficiencies (50 lm/W) and stabilities (300 h) due to both thermal- and photo-degradation. Here, we present a significant enhancement in efficiency (~130 lm/W) and stability (>150 days) using a zero-thermal-quenching bio-phosphor design. This is achieved shielding the FP surface with a hydrophilic polymer allowing their homogenous integration into the network of a light-guiding and hydrophobic host polymer. We rationalize how the control of the mechanical and optical features of this bio-phosphor is paramount towards highly stable and efficient Bio-HLEDs, regardless of the operation conditions. This is validated by the relationships between the stiffness of the FP-polymer phosphor and the maximum temperature reached under device operation as well as the transmittance of the filters and device efficiency.


Assuntos
Proteínas de Fluorescência Verde/genética , Luz , Organofosfatos/química , Polimetil Metacrilato/química , Semicondutores , Bioengenharia/métodos , Dicroísmo Circular , Cor , Desenho de Equipamento , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/isolamento & purificação , Mutação , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura
14.
Polymers (Basel) ; 11(1)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30960108

RESUMO

The effect of the graphene nanoplateletets (GNP), at concentration of 1, 5 and 10 wt %, in Poly ether ether ketone (PEEK) composite crystallization from melt and during cold crystallization were investigated by differential scanning calorimetry (DSC) and real time X-ray diffraction experiments. DSC results revealed a double effect of GNP: (a) nucleating effect crystallization from melt started at higher temperatures and (b) longer global crystallization time due to the restriction in the polymer chain mobility. This hindered mobility were proved by rheological behavior of nanocomposites, because to the increase of complex viscosity, G', G″ with the GNP content, as well as the non-Newtonian behavior found in composites with high GNP content. Finally, real time wide and small angle synchrotron X-ray radiation (WAXS/SAXS) X-ray measurements showed that GNP has not affected the orthorhombic phase of PEEK nor the evolution of the crystal phase during the crystallization processes. However, the correlation length of the crystal obtained by WAXS and the long period (L) by SAXS varied depending on the GNP content.

15.
ACS Nano ; 10(8): 8012-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27454946

RESUMO

In this work, we study the reinforcement of polymers by mechanically interlocked derivatives of single-walled carbon nanotubes (SWNTs). We compare the mechanical properties of fibers made of polymers and of composites with pristine SWNTs, mechanically interlocked derivatives of SWNTs (MINTs), and the corresponding supramolecular models. Improvements of both Young's modulus and tensile strength of up to 200% were observed for the polystyrene-MINT samples with an optimized loading of just 0.01 wt %, while the supramolecular models with identical chemical composition and loading showed negligible or even detrimental influence. This behavior is found for three different types of SWNTs and two types of macrocycles. Molecular dynamics simulations show that the polymer adopts an elongated conformation parallel to the SWNT when interacting with MINT fillers, irrespective of the macrocycle chemical nature, whereas a more globular structure is taken upon facing with either pristine SWNTs or supramolecular models. The MINT composite architecture thus leads to a more efficient exploitation of the axial properties of the SWNTs and of the polymer chain at the interface, in agreement with experimental results. Our findings demonstrate that the mechanical bond imparts distinctive advantageous properties to SWNT derivatives as polymer fillers.

16.
Sci Rep ; 5: 16729, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578104

RESUMO

In the presence of macroscopic fibres of carbon nanotubes (CNT), various semicrystalline polymers are shown to present accelerated crystallisation through the formation of a transcrystalline (TC) layer perpendicular to the fibre axis. From differential scanning calorimetry, polarized optical microscopy and X-ray diffraction we establish this to be due to much faster nucleation rates at the fibre surface. The formation of a TC layers is demonstrated for polyvinyldene fluoride, isotactic polypropylene and poly(lactic acid) in spite of the large differences in their chemistry and structure unit cells, suggesting that epitaxy in terms of lattice type or size matching is not a prerequisite. For the three polymers as well as poly(ether ether ketone), the TC layer is identically oriented with the chain axis in the lamella parallel to the CNTs, as observed by wide and small angle X-ray scattering. These results point to polymer chain orientation at the point of adsorption and the formation of a mesomorphic layer as possible steps in the fast nucleation of oriented lamella, with wetting of the CNT fibre surface by the molten semi-crystalline polymer a key condition for heterogeneous nucleation to take place.

17.
ACS Macro Lett ; 1(5): 627-631, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35607075

RESUMO

Directional dry etching of polymer films under oxygen plasmas combined with a controlled crystallization and mechanical pretreatment of the polymer sample was exploited for obtaining surface nanopatterns. Fibrillar and lamellae surface nanopatterns of different dimensions, either randomly distributed or aligned in a particular direction, were obtained depending on the mechanical history. Similar structures were obtained from iPP and PET if the samples had comparable thermal and mechanical pretreatments. The obtained results are from preferential etching of domains with low order from the surface and persistence of highly ordered ones at low etching ratios. This patterning method seems to be applicable to different polymer materials independently of their chemical composition and can be regarded as a low-cost alternative at the nanoscale to current patterning techniques relying on lithography and replication.

18.
Adv Mater ; 24(34): 4601-4, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22718271

RESUMO

Gecko-inspired arrays of micropillars made of a liquid crystalline elastomer display thermoswitchable adhesive behavior as a consequence of elongation changes caused by reorientation of the mesogens at the nematic-isotropic (N-I) phase transition.


Assuntos
Adesivos/química , Biomimética/métodos , Elastômeros/química , Cristais Líquidos/química , Benzoatos/química
19.
J Colloid Interface Sci ; 357(1): 234-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21349530

RESUMO

Polyethylene terephthalate (PET) films have been structured with isolated nanofibrils and fibril bundles using oxidative plasma treatments with increasing etching ratios. The transition from fibrils to bundles was smooth and it was associated with a significant reduction in the overall top area fraction and with the development of a second organisation level at a larger length scale. This increased complexity was reflected in the surface properties. The surfaces with two-level substructures showed superhydrophilic and superhydrophobic properties depending on the surface chemistry. These properties were preserved during prolonged storage and resisted moderate mechanical stress. By combining different contact angle and drop impact measurements, the optimum surface design and plasma processing parameters for maximizing stability of the superhydrophobic or superhydrophilic properties of the PET films were identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA