Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 45(24): 6595-6598, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325848

RESUMO

Over the past two decades, integrated photonic sensors have been of major interest to the optical biosensor community due to their capability to detect low concentrations of molecules with label-free operation. Among these, interferometric sensors can be read-out with simple, fixed-wavelength laser sources and offer excellent detection limits but can suffer from sensitivity fading when not tuned to their quadrature point. Recently, coherently detected sensors were demonstrated as an attractive alternative to overcome this limitation. Here we show, for the first time, to the best of our knowledge, that this coherent scheme provides sub-nanogram per milliliter limits of detection in C-reactive protein immunoassays and that quasi-balanced optical arm lengths enable operation with inexpensive Fabry-Perot-type lasers sources at telecom wavelengths.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteína C-Reativa/análise , Imunoensaio/instrumentação , Interferometria/instrumentação , Silício/química , Óptica e Fotônica , Processos Fotoquímicos
2.
Analyst ; 145(2): 497-506, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31750459

RESUMO

Nosocomial infections are a major concern at the worldwide level. Early and accurate identification of nosocomial pathogens is crucial to provide timely and adequate treatment. A prompt response also prevents the progression of the infection to life-threatening conditions, such as septicemia or generalized bloodstream infection. We have implemented two highly sensitive methodologies using an ultrasensitive photonic biosensor based on a bimodal waveguide interferometer (BiMW) for the fast detection of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), two of the most prevalent bacteria associated with nosocomial infections. For that, we have developed a biofunctionalization strategy based on the use of a PEGylated silane (silane-PEG-COOH) which provides a highly resistant and bacteria-repelling surface, which is crucial to specifically detect each bacterium. Two different biosensor assays have been set under standard buffer conditions: one based on a specific direct immunoassay employing polyclonal antibodies for the detection of P. aeruginosa and another one employing aptamers for the direct detection of MRSA. The biosensor immunoassay for P. aeruginosa is fast (it only takes 12 min) and specific and has experimentally detected concentrations down to 800 cfu mL-1 (cfu: colony forming unit). The second one relies on the use of an aptamer that specifically detects penicillin-binding protein 2a (PBP2a), a protein only expressed in the MRSA mutant, providing a photonic biosensor with the ability to identify the resistant pathogen MRSA and differentiate it from methicillin-susceptible S. aureus (MSSA). Direct, label-free, and selective detection of whole MRSA bacteria has been achieved, making possible the direct detection of also 800 cfu mL-1. According to the signal-to-noise (S/N) ratio of the device, a theoretical limit of detection (LOD) of around 49 and 29 cfu mL-1 was estimated for P. aeruginosa and MRSA, respectively. Both results obtained under standard conditions reveal the great potential this interferometric biosensor device has as a versatile and specific tool for bacterial detection and quantification, providing a rapid method for the identification of nosocomial pathogens within the clinical requirements of sensitivity for the diagnosis of infections.


Assuntos
Técnicas Biossensoriais/métodos , Infecção Hospitalar/diagnóstico , Interferometria/instrumentação , Interferometria/métodos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/diagnóstico , Infecção Hospitalar/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia
3.
Sensors (Basel) ; 19(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450817

RESUMO

Waveguide-based photonic sensors provide a unique combination of high sensitivity, compact size and label-free, multiplexed operation. Interferometric configurations furthermore enable a simple, fixed-wavelength read-out making them particularly suitable for low-cost diagnostic and monitoring devices. Their limit of detection, i.e., the lowest analyte concentration that can be reliably observed, mainly depends on the sensors response to small refractive index changes, and the noise in the read-out system. While enhancements in the sensors response have been extensively studied, noise optimization has received much less attention. Here we show that order-of-magnitude enhancements in the limit of detection can be achieved through systematic noise reduction, and demonstrate a limit of detection of ∼ 10 - 8 RIU with a silicon nitride sensor operating at telecom wavelengths.


Assuntos
Técnicas Biossensoriais , Óptica e Fotônica/métodos , Compostos de Silício/isolamento & purificação , Interferometria , Limite de Detecção , Compostos de Silício/química
4.
Sensors (Basel) ; 16(3): 285, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26927105

RESUMO

We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

5.
Diagnostics (Basel) ; 10(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086716

RESUMO

Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.

6.
Biosens Bioelectron ; 117: 47-52, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29885579

RESUMO

An interferometric nanobiosensor for the specific and label-free detection of the pollutant Irgarol 1051 directly in seawater has been settled. Due to the low molecular weight of Irgarol pollutant and its expected low concentration in seawater, the sensor is based on a competitive inhibition immunoassay. Parameters as surface biofunctionalization, concentration of the selective antibody and regeneration conditions have been carefully evaluated. The optimized immunosensor shows a limit of detection of only 3 ng/L, well below the 16 ng/L set by the EU as the maximum allowable concentration in seawater. It can properly operate during 30 assay-regeneration cycles using the same sensor biosurface and with a time-to-result of only 20 min for each cycle. Moreover, the interferometric nanosensor is able to directly detect low concentrations of Irgarol 1051 in seawater without requiring sample pre-treatments and without showing any background signal due to sea matrix effect.


Assuntos
Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Interferometria , Água do Mar/química , Triazinas/análise , Técnicas Biossensoriais/instrumentação , Monitoramento Ambiental/instrumentação , Limite de Detecção , Poluentes Químicos da Água/análise
7.
Curr Opin Biotechnol ; 45: 175-183, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28458110

RESUMO

The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance.


Assuntos
Técnicas Biossensoriais/métodos , Monitoramento Ambiental , Nanotecnologia/métodos , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Nanotecnologia/economia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA