Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Crit Rev Toxicol ; 48(3): 252-271, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239234

RESUMO

Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.


Assuntos
Nanoestruturas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Testes de Toxicidade/métodos , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Inflamação/induzido quimicamente , Inflamação/imunologia , Macrófagos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Espécies Reativas de Oxigênio/metabolismo , Roedores
2.
Risk Anal ; 38(7): 1321-1331, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29240986

RESUMO

Societies worldwide are investing considerable resources into the safe development and use of nanomaterials. Although each of these protective efforts is crucial for governing the risks of nanomaterials, they are insufficient in isolation. What is missing is a more integrative governance approach that goes beyond legislation. Development of this approach must be evidence based and involve key stakeholders to ensure acceptance by end users. The challenge is to develop a framework that coordinates the variety of actors involved in nanotechnology and civil society to facilitate consideration of the complex issues that occur in this rapidly evolving research and development area. Here, we propose three sets of essential elements required to generate an effective risk governance framework for nanomaterials. (1) Advanced tools to facilitate risk-based decision making, including an assessment of the needs of users regarding risk assessment, mitigation, and transfer. (2) An integrated model of predicted human behavior and decision making concerning nanomaterial risks. (3) Legal and other (nano-specific and general) regulatory requirements to ensure compliance and to stimulate proactive approaches to safety. The implementation of such an approach should facilitate and motivate good practice for the various stakeholders to allow the safe and sustainable future development of nanotechnology.

3.
Environ Sci Technol ; 50(12): 6124-45, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27177237

RESUMO

Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.


Assuntos
Ecologia , Nanoestruturas , Ecossistema , Ecotoxicologia , Meio Ambiente , Humanos
4.
Environ Sci Technol ; 49(7): 4389-97, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25756614

RESUMO

Frameworks commonly used in trace metal ecotoxicology (e.g., biotic ligand model (BLM) and tissue residue approach (TRA)) are based on the established link between uptake, accumulation and toxicity, but similar relationships remain unverified for metal-containing nanoparticles (NPs). The present study aimed to (i) characterize the bioaccumulation dynamics of PVP-, PEG-, and citrate-AgNPs, in comparison to dissolved Ag, in Daphnia magna and Lumbriculus variegatus; and (ii) investigate whether parameters of bioavailability and accumulation predict acute toxicity. In both species, uptake rate constants for AgNPs were ∼ 2-10 times less than for dissolved Ag and showed significant rank order concordance with acute toxicity. Ag elimination by L. variegatus fitted a 1-compartment loss model, whereas elimination in D. magna was biphasic. The latter showed consistency with studies that reported daphnids ingesting NPs, whereas L. variegatus biodynamic parameters indicated that uptake and efflux were primarily determined by the bioavailability of dissolved Ag released by the AgNPs. Thus, principles of BLM and TRA frameworks are confounded by the feeding behavior of D. magna where the ingestion of AgNPs perturbs the relationship between tissue concentrations and acute toxicity, but such approaches are applicable when accumulation and acute toxicity are linked to dissolved concentrations. The uptake rate constant, as a parameter of bioavailability inclusive of all available pathways, could be a successful predictor of acute toxicity.


Assuntos
Daphnia/metabolismo , Nanopartículas Metálicas/toxicidade , Oligoquetos/metabolismo , Prata/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Disponibilidade Biológica , Ácido Cítrico/metabolismo , Ecotoxicologia , Nanopartículas , Polietilenoglicóis/metabolismo , Povidona/metabolismo , Prata/toxicidade , Nitrato de Prata/metabolismo , Nitrato de Prata/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Ecotoxicology ; 24(6): 1372-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26173674

RESUMO

These studies were undertaken in order to propose and test new methods for the assessment of the acute hazard of ZnO nanoparticles (NPs) to the sediment dwelling oligochaete worm Lumbriculus variegatus. In order to support the developing nanotechnology sector, comprehensive studies must be conducted to assess the toxicity of nanomaterials (NMs) using environmentally relevant organisms. An important part of such studies will entail characterising and understanding the physicochemical properties of these NMs. In this study NMs were characterised using a range of techniques, in order to assess agglomeration/aggregation and dissolution. Toxicology studies included a behavioural assay and the measurement of oxidative stress. When considering the toxicology results from all experiments using L. variegatus within this paper ZnO NPs (0-10 mg/l) were found to cause acute toxicity in terms of behavioural response, but not to cause acute oxidative stress in terms of glutathione (GSH) depletion. It was also concluded that the behavioural assay and the GSH assay were both suitable techniques for assessing the acute hazard of NMs to L. variegatus.


Assuntos
Nanopartículas Metálicas/toxicidade , Oligoquetos/efeitos dos fármacos , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Animais , Locomoção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade
6.
ALTEX ; 40(1): 125-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35796348

RESUMO

Manufacturing and functionalizing materials at the nanoscale has led to the generation of a whole array of nanoforms (NFs) of substances varying in size, morphology, and surface characteristics. Due to financial, time, and ethical considerations, testing every unique NF for adverse effects is virtually impossible. Use of hypothesis-driven grouping and read-across approaches, as supported by the GRACIOUS Framework, represents a promising alternative to case-by-case testing that will make the risk assessment process more efficient. Through application of appropriate grouping hypotheses, the Framework facilitates the assessment of similarity between NFs, thereby supporting grouping and read-across of information, minimizing the need for new testing, and aligning with the 3R principles of replacement, reduction, and refinement of animals in toxicology studies. For each grouping hypothesis an integrated approach to testing and assessment (IATA) guides the user in data gathering and acquisition to test the hypothesis, following a structured format to facilitate efficient decision-making. Here we present the template used to generate the GRACIOUS grouping hypotheses encompassing information relevant to "Lifecycle, environmental release, and human exposure", "What they are: physicochemical characteristics", "Where they go: environmental fate, uptake, and toxicokinetics", and "What they do: human and environmental toxicity". A summary of the template-derived hypotheses focusing on human health is provided, along with an overview of the IATAs generated by the GRACIOUS project. We discuss the application and flexibility of the template, providing the opportunity to expand the application of grouping and read-across in a logical, evidence-based manner to a wider range of NFs and substances.


Assuntos
Substâncias Perigosas , Animais , Humanos , Medição de Risco , Substâncias Perigosas/toxicidade , Substâncias Perigosas/química , Toxicocinética
7.
Ecotoxicology ; 21(4): 933-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22422174

RESUMO

This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench.


Assuntos
Ecotoxicologia/métodos , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Animais , Bioensaio , Ensaio Cometa/métodos , Determinação de Ponto Final , Peixes/metabolismo , Guias como Assunto , Metais/toxicidade , Testes para Micronúcleos/métodos , Microscopia Eletrônica/métodos , Nanoestruturas/química , Tamanho da Partícula , Microbiologia do Solo
8.
Environ Toxicol Chem ; 41(6): 1390-1406, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35226375

RESUMO

An integrated testing strategy for ecotoxicity assessment (ITS-ECO) was developed to aid in the hazard and fate assessment of engineered nanomaterials (ENMs) deposited in marine environments using the bivalve Mytilus spp. as a test species. The ENMs copper(II) oxide (CuO) and titanium dioxide (TiO2 ), either in pristine form (core) or with functionalized coatings (polyethylene glycol [PEG], carboxyl [COOH], and ammonia [NH3 ]) were selected as case study materials based on their production levels and use. High-throughput in vitro testing in Tier 1 of the ITS-ECO revealed CuO ENMs to elicit cytotoxic effects on lysosomes of hemocytes of mussels, with the hazard potential CuO PEG > CuO COOH > CuO NH3 > CuO core, whereas TiO2 ENMs were not cytotoxic. Genotoxicity in hemocytes as well as gill cells of mussels following in vivo exposure (48 h) to CuO ENMs was also seen. Longer in vivo exposures in Tier 2 (48 h-21 days) revealed subacute and chronic oxidative effects for both CuO and TiO2 ENMs, in some cases leading to lipid peroxidation (core TiO2 ENMs). In Tier 3 bioaccumulation studies, distinct patterns of uptake for Cu (predominantly in gills) and Ti (predominantly in digestive glands) and between the different core and coated ENMs were found. Clear NM-specific and coating-dependent effects on hazard and fate were seen. Overall, using a tiered testing approach, the ITS-ECO was able to differentiate the hazard (acute, subacute, and chronic effects) posed by ENMs of different compositions and coatings and to provide information on fate for environmental risk assessment of these ENMs. Environ Toxicol Chem 2022;41:1390-1406. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Mytilus , Nanoestruturas , Animais , Cobre/toxicidade , Nanoestruturas/química , Nanoestruturas/toxicidade , Titânio
9.
J Environ Monit ; 13(5): 1227-35, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21499624

RESUMO

Acute (96 h) and chronic (21 d) exposures of Daphnia magna neonates were carried out with nano- and micro-sized Ag and CeO(2) particles to assess the influence of both material and size of particles on mortality and moulting. Mortality rates for silver in the acute exposures were: AgNP, 56.7 ± 23.3% at 0.1 mg L(-1) and 100 ± 20% at 1 mg L(-1), and micro-Ag, 13.3 ± 6.7% at 0.1 mg L(-1) and 80 ± 20% at 1 mg L(-1). CeO(2) was not acutely toxic at concentrations up to 10 mg L(-1). Mortality for Ag over 21d at concentrations of up to 0.05 mg L(-1) was low, while mortality of 30% was observed for 0.001 mg L(-1) of nano-Ag. CeO(2), with the exception of the 10 mg L(-1) of nano-CeO(2) (100% mortality by day 7), was non-toxic. Inhibition of moulting and growth in the acute study occurred at toxic concentrations (Ag particles), and at 10 mg L(-1) of nano-CeO(2). The chronic study revealed reduced moulting at 0.001 mg L(-1) of nano-Ag and 0.01 and 0.05 mg L(-1) of both sizes of Ag, but there was no impact on D. magna size, and no effects of CeO(2). The toxicity of nano-CeO(2) may be attributed to reduced feeding and physical interference with the daphnids' carapace, resulting in reduced swimming ability. Our results suggest that Ag NPs in particular have the potential to be harmful to aquatic invertebrates after release into the environment, whereas CeO(2) particles appear to cause little adverse effects, and only at environmentally irrelevant concentrations.


Assuntos
Cério/toxicidade , Daphnia/efeitos dos fármacos , Nanopartículas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Tamanho da Partícula , Natação
10.
NanoImpact ; 21: 100291, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559780

RESUMO

The use of silver (Ag) and titanium dioxide (TiO2) nanomaterials (NMs) in industrial processes and consumer products has experienced considerable growth since the late 20th century. Throughout their lifecycle, both Ag NM and TiO2NM are released into the environment, with benthic systems anticipated to be the final sink. Their potential toxicity towards benthic species is therefore of major concern. This study investigated the toxicity of silver (Ag; NM-300 K) and titanium dioxide (TiO2; NM-104) NMs to the freshwater oligochaete, Lumbriculus variegatus in acute (0-96-h) waterborne and chronic (28-d) sediment studies. Toxicity was investigated via assessment of mortality, behaviour, and antioxidant enzyme activity. The 96-h LC50 for Ag NMs in water was 0.51 mg/l (95% CI, 0.45-0.56), with L. variegatus displaying inhibited predation-avoidance behaviour compared to controls (6.66 ± 10%) successful response at 24-h), as well as significant increases (p < 0.05) in catalase (CAT) activity at sub-lethal concentrations at 24-h. Behavioural improvement and the return of antioxidant enzymes to control levels was observed after 48 and 72-h. AgNO3 exposure proved more toxic than Ag NM (96-h LC50 = 0.034 mg/l, 95% CI, 0.031-0.037) but resulted in no changes to antioxidant enzymes following sub-lethal exposure. Furthermore, Ag dissolution from Ag NM (~2-4%) could not account for the full extent of toxicity observed, suggesting a nano-specific effect. Increased environmental relevance via the inclusion of Suwannee River Humic Acid (SRHA, 5 mg/l) alleviated sub-lethal Ag NM toxicity despite a comparable 96-h LC50 (0.54 mg/l, 95% CI, 0.51-0.57). Significant effects of Ag NMs in formulated sediments (mortality, biomass) were only recorded according to OECD 225 at the highest test concentration (1333 mg/kg) for Ag NM indicating a potential attenuating effect of sediments towards toxicity. No toxicity was observed for TiO2 NM in aquatic or sediment exposures up to concentrations of 2000 mg/l and 1333 mg/kg, respectively.


Assuntos
Nanoestruturas , Oligoquetos , Poluentes Químicos da Água , Animais , Antioxidantes/farmacologia , Nanoestruturas/toxicidade , Prata/toxicidade , Titânio , Poluentes Químicos da Água/toxicidade
11.
J Environ Monit ; 12(1): 318-28, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20082028

RESUMO

Coastal shallow lagoons are considered to be highly important systems, which have specific biogeochemical cycles and characteristics. The assessment of sediment-water interfaces is essential to understand nutrient dynamics and to evaluate the vulnerability to eutrophication, especially in regions of restricted water exchange (RRE), such as the Ria Formosa, which have natural conditions for the accumulation of nutrients. Water samples were collected during the years of 2006 and 2007-08 for nutrients, chlorophyll a and dissolved oxygen. Sediment samples were also collected for pore water nutrients and microphytobenthic chlorophyll a. Measurements of temperature, salinity and photosynthetic active radiation were also taken. The lagoon salinity is affected by occasional strong rainfall events. From comparison with previous work, a decrease in the nitrogen concentration in the water column can be observed, which may indicate an improvement of the water quality. Pore water nutrient concentrations were significantly larger than in the water column. Sediment-water exchanges are considered to be the most important processes in nutrient dynamics of the lagoon. Benthic microalgal biomass was also large compared with that of the phytoplankton. It represents about 99% of the total microalgal chlorophyll biomass of the system. The lagoon also contains (discontinuous) meadows of intertidal seagrass, but we did not study these. Due to the importance of sediments, the standard monitoring plans required by the Water Framework Directive may fail to track changes in the nutrient conditions and the microalgal responses to them.


Assuntos
Ecossistema , Monitoramento Ambiental , Eucariotos/isolamento & purificação , Geografia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Água do Mar/química , Água do Mar/microbiologia , Biomassa , Clorofila/metabolismo , Clorofila A , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Nitrogênio/análise , Oxigênio/análise , Portugal , Chuva , Salinidade , Estações do Ano , Temperatura , Fatores de Tempo
12.
Environ Toxicol Chem ; 39(2): 287-299, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31610609

RESUMO

We evaluated the effect of copper oxide nanomaterials (CuO NMs), uncoated and with 3 different surface coatings (carboxylated, pegylated, and ammonia groups), on acute toxicity and accumulation dynamics in Daphnia magna. With the use of biodynamic modelling, biosorption and elimination rate constants were determined for D. magna following waterborne exposure to dissolved Cu and CuO NMs. The relationship between modeled parameters and acute toxicity endpoints was evaluated to investigate whether accumulation dynamics parameters could be used as a predictor of acute toxicity. The Langmuir equation was used to characterize the biosorption dynamics of Cu NMs and Cu chloride, used as dissolved Cu control. Uptake rates showed the following NM rankings: pristine-CuO > NH3 -CuO > aqueous Cu > polyethylene glycol (PEG)-CuO > COOH-CuO. To determine Cu elimination by D. magna, a one-compartment model was used. Different elimination rate constants were estimated for each chemical substance tested. Those that were easily biosorbed were also easily removed from organisms. Biosorption and depuration properties of NMs were correlated with zeta potential values and diameters of NM agglomerates in the suspensions. No link was found between biosorption and toxicity. Waterborne exposures to more difficult-to-biosorb CuO NMs were more likely to induce adverse effects than those that biosorbed easily. It is proposed that some physicochemical properties of NMs in media, including zeta potential and agglomerate diameter, can lead to higher biosorption but do not necessarily affect toxicity. The mode of interaction of the NMs with the organism seems to be complex and to depend on chemical speciation and physicochemical properties of the NMs inside an organism. Moreover, our findings highlight that coating type affects the biosorption dynamics, depuration kinetics, and dissolution rate of NMs in media. Environ Toxicol Chem 2020;39:287-299. © 2019 SETAC.


Assuntos
Cobre/toxicidade , Daphnia/efeitos dos fármacos , Nanoestruturas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioacumulação , Cobre/metabolismo , Daphnia/metabolismo , Modelos Biológicos , Nanoestruturas/química , Solubilidade , Propriedades de Superfície , Água/química , Poluentes Químicos da Água/metabolismo
13.
Sci Total Environ ; 715: 136941, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32041050

RESUMO

Lead-halide perovskite nanoparticles (NPs) are a new technology, and investigation of toxicity is of considerable importance due to the potential lead (Pb) release into the environment. The aim of the study was to investigate aqueous and dietary toxicity of Pb-halide perovskite NP and Pb in zebrafish Danio rerio. Perovskite NP toxicity was evaluated in zebrafish by mortality, gene expression, histopathology, and phylogenetic analysis of gut microbiota. Zebrafish larvae were exposed to five Pb-halide perovskite NPs in parallel with Pb(NO3)2 exposures, and zebrafish adults were exposed to the three perovskite NPs that caused the strongest effect and Pb(NO3)2. No median lethal concentration (LC50) was observed for zebrafish larvae exposed to up to 200 mg/L of perovskite NPs for 96 h. Mortality, metallothionein 2 (mt2) and δ-aminolevulinic acid dehydratase (ala-d) gene expression (24-h exposure) in zebrafish larvae after aqueous perovskite NPs exposures did not differ from total Pb concentration - response curves. The lack of differences in mortality and gene expression between perovskite NPs and soluble Pb after aqueous exposure suggest that toxicity from perovskite NPs can be attributed to bioavailable Pb rather than nano-specific effects. Induction of mt2 and reduction of ala-d expression levels in liver tissues showed Pb bioavailability after 2-d and 4-d dietary exposure to perovskite-spiked feeds. Changes in gut microbiota of adult zebrafish were detected after 14-d exposure to Pb-spiked food, but no changes were detected from perovskite-NP spiked food. The phylogenetic analysis identified different microbiome profiles of Pb-fed fish compared to perovskite-fed fish suggesting a different mechanism of toxicity. Exposure to Pb-halide perovskite NPs led to absorption of Pb likely from release of Pb ions rather than absorption of NPs. Pb-halide perovskite NPs can release bioavailable Pb and this needs to be considered during the development of this technology.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Animais , Compostos de Cálcio , Chumbo , Óxidos , Filogenia , Titânio , Poluentes Químicos da Água , Peixe-Zebra
14.
Materials (Basel) ; 13(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066064

RESUMO

The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.

15.
Environ Health ; 8 Suppl 1: S2, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20102587

RESUMO

The aim of this project was to compare cerium oxide and silver particles of different sizes for their potential for uptake by aquatic species, human exposure via ingestion of contaminated food sources and to assess their resultant toxicity. The results demonstrate the potential for uptake of nano and larger particles by fish via the gastrointestinal tract, and by human intestinal epithelial cells, therefore suggesting that ingestion is a viable route of uptake into different organism types. A consistency was also shown in the sensitivity of aquatic, fish cell and human cell models to Ag and CeO2 particles of different sizes; with the observed sensitivity sequence from highest to lowest as: nano-Ag > micro Ag > nano CeO2 = micro CeO2. Such consistency suggests that further studies might allow extrapolation of results between different models and species.


Assuntos
Cério/toxicidade , Exposição Ambiental/análise , Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Carpas/metabolismo , Células Cultivadas , Cério/metabolismo , Daphnia/efeitos dos fármacos , Ingestão de Alimentos , Poluentes Ambientais/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Modelos Biológicos , Tamanho da Partícula , Prata/metabolismo , Testes de Toxicidade
16.
Environ Toxicol Chem ; 28(10): 2142-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19588999

RESUMO

The use of nanoparticles in various applications is steadily on the rise, with use in a range of applications, including printer toner, sunscreen, medical imaging, and enhanced drug delivery. While research on human effects via, for example, inhalation is relatively well developed, the environmental assessment of nanoparticles is in its infancy. In the present study, we assessed the uptake and quantitative accumulation, as well as the depuration, of a model nanoparticle, a 20-nm fluorescent carboxylated polystyrene bead, in the aquatic invertebrate Daphnia magna and compared it to a larger, 1,000-nm particle. Using confocal microscopy, rapid accumulation in the gastrointestinal tract was observed within an hour of exposure to both particle sizes in both adults and neonates. Fluorescence could also be observed in the oil storage droplets, suggesting that both particle sizes have crossed the gut's epithelial barrier. Quantification of fluorescence of both sizes of particles showed that although uptake of the 20-nm particles was lower in terms of mass it was equal to or greater than 1000-nm particle uptake when expressed as surface area or particle number. Depuration was relatively rapid for the 1000-nm beads, decreasing by more than 90% over 4 h. In contrast, depuration of the 20-nm beads was less extensive, reaching 40% over 4 h. Transmission electron microscopy confirmed uptake of 1,000-nm beads, but uptake of 20-nm beads was inconclusive since similar-sized inclusions could be observed in control treatments.


Assuntos
Daphnia/metabolismo , Nanopartículas/química , Poliestirenos/metabolismo , Animais , Microscopia Eletrônica , Tamanho da Partícula , Poliestirenos/química , Poliestirenos/farmacocinética , Distribuição Tecidual , Água/química
17.
Environ Toxicol Chem ; 38(5): 925-935, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698850

RESUMO

Sorption of chemical substances to nanoparticles (NPs) in the aqueous phase strongly influences NP physicochemisty, and investigations of these complex interactions can provide important insights into the environmental fate of NPs. The objective of the present study was to use differences in copper (Cu) bioavailability to investigate aqueous-phase sorption with NPs that had different physicochemical characteristics (silicon [Si], perovskite, and titanium dioxide NPs [TiO2 NPs]). Sorption of Cu with NPs was assessed by the presence of adsorbent in water and onto the NP surface after ultracentrifugation, and by changes in Cu bioavailability under static conditions during exposure of larval zebrafish, as well as under conditions of continuous agitation during exposure of the alga Chlorella vulgaris. The presence of TiO2 NPs reduced total Cu in the water column and Cu bioavailability (measured by growth inhibition, mortality, and metallothionein 2 gene expression), confirming Cu sorption to TiO2 NPs. Nanoparticle surface area was the most important factor that affected Cu sorption, as indicated by less bioavailable Cu in the presence of smaller TiO2 NPs. The surface area effect was consistent regardless of exposure conditions (alga, continuous agitation; zebrafish, static water) and was further supported by the fact that the lowest total Cu concentration in the water column was found in the presence of the smallest NP. The results differed with other NP types, for example, silicon NPs, in which Cu sorption was indicated by analytical chemistry, but sorption was not sufficient to significantly alter Cu bioavailability. The bioavailability tests did not indicate Cu sorption with perovskite NPs. The results demonstrate that surface area critically influences sorption, that Cu sorption as measured by bioavailability is not affected by agitation or static conditions, and that Cu sorption differs among types of NPs, indicating differences in their surface physicochemistry. Environ Toxicol Chem 2019;9999:1-11. © 2019 SETAC.


Assuntos
Cobre/metabolismo , Nanopartículas/química , Água/química , Adsorção , Animais , Disponibilidade Biológica , Compostos de Cálcio/química , Chlorella vulgaris/crescimento & desenvolvimento , Regulação da Expressão Gênica , Larva/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Óxidos/química , Propriedades de Superfície , Titânio/química , Poluentes Químicos da Água/química , Peixe-Zebra/genética
18.
Food Chem Toxicol ; 126: 178-191, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797875

RESUMO

Organically modified clays can be used as nanofillers in polymer-clay nanocomposites to create bio-based packaging with improved strength and barrier properties. The impact of organic modification on the physico-chemical properties and toxicity of clays has yet to be fully investigated but is essential to ensure their safe use. Two organoclays, named N116_HDTA and N116_TMSA, were prepared using a commercially available sodium bentonite clay and the organic modifiers hexadecyl trimethyl ammonium bromide (HDTA) and octadecyl trimethyl ammonium chloride (TMSA). An in vitro hazard assessment was performed using HaCaT skin cells, C3A liver cells, and J774.1 macrophage-like cells. Organic modification with HDTA and TMSA increased the hazard potential of the organoclays in all cell models, as evidenced by the higher levels of cytotoxicity measured. N116_TMSA caused the greatest loss in viability with IC50 values of 3.2, 3.6 and 6.1 µg/cm2 calculated using J774.1, HaCaT and C3A cell lines, respectively. Cytotoxic effects were dictated by the amount of free or displaced organic modifier present in the exposure suspensions. The parent bentonite clay also caused distinct cytotoxic effects in J774.1 macrophage-like cells with associated TNF-α release. Such information on the hazard profile of organoclays, can feed into risk assessments for these materials.


Assuntos
Argila/química , Embalagem de Alimentos/instrumentação , Hepatócitos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanocompostos/toxicidade , Polímeros/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Cetrimônio/química , Cetrimônio/toxicidade , Hepatócitos/citologia , Humanos , Queratinócitos/citologia , Macrófagos/citologia , Camundongos , Nanocompostos/química , Polímeros/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/toxicidade
19.
Environ Toxicol Chem ; 27(9): 1825-51, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19086204

RESUMO

The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.


Assuntos
Poluentes Ambientais/toxicidade , Nanoestruturas/toxicidade , Animais , Disponibilidade Biológica , Poluentes Ambientais/química , Poluentes Ambientais/farmacocinética , Peixes/fisiologia , Humanos , Biologia Marinha , Nanoestruturas/química , Medição de Risco , Poluentes do Solo/química , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
20.
Environ Toxicol Chem ; 37(9): 2281-2295, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30027629

RESUMO

The United Nations' Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. Environ Toxicol Chem 2018;37:2281-2295. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Meio Ambiente , Pesquisa , Desenvolvimento Sustentável , Biodiversidade , Poluentes Ambientais/toxicidade , Europa (Continente) , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA