Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Nurs Manag ; 30(5): 1303-1316, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35403277

RESUMO

AIM: This study aims to explore the experiences and mediating factors of nurses' responses to electronic device alarms in critical care units (CCUs). BACKGROUND: Alarm fatigue occasionally has adverse consequences for patient safety. METHODS: This qualitative study was designed and analysed following Giorgi's descriptive phenomenological approach. Seventeen nurses were theoretically sampled, reaching information saturation. Semistructured interviews were used to collect the data. RESULTS: Three central themes explained nurses' experiences: general perceptions about alarms (basic equipment of the CCU), strategies to reduce false alarms (training in the configuration of monitors, customization of the alarms to fit he patient's condition. teamwork and taking advantage of the development of technology) and key elements of the response to alarms (information about patient's condition, nurses' clinical experience, type of CCU, 'cry-wolf' phenomenon and nurse/patient ratio). CONCLUSIONS: To reduce false alarms, nurses need further postgraduate training, training on monitors and customizing alarms to fit the patient's health status. The complex process of deciding to respond to an alarm includes environmental, professional variables and patient status. IMPLICATIONS FOR NURSING MANAGEMENT: Nurse managers should ensure that nurses have sufficient experience and training in the CCU, improve the nurse/patient ratio, promote teamwork and ensure that the devices are the latest generation.


Assuntos
Alarmes Clínicos , Enfermeiras e Enfermeiros , Eletrônica , Humanos , Masculino , Análise de Mediação , Monitorização Fisiológica
2.
Am J Physiol Renal Physiol ; 310(11): F1377-84, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27029424

RESUMO

Autonomic and somatic motor neurons that innervate the urinary bladder and urethra control the highly coordinated functions of the lower urinary tract, the storage, and the emptying of urine. ACh is the primary excitatory neurotransmitter in the bladder. Here, we aimed to determine whether PKA regulates neuronal ACh release and related nerve-evoked detrusor smooth muscle (DSM) contractions in the guinea pig urinary bladder. Isometric DSM tension recordings were used to measure spontaneous phasic and electrical field stimulation (EFS)- and carbachol-induced DSM contractions with a combination of pharmacological tools. The colorimetric method was used to measure ACh released by the parasympathetic nerves in DSM isolated strips. The pharmacological inhibition of PKA with H-89 (10 µM) increased the spontaneous phasic contractions, whereas it attenuated the EFS-induced DSM contractions. Intriguingly, H-89 (10 µM) attenuated the (primary) cholinergic component, whereas it simultaneously increased the (secondary) purinergic component of the nerve-evoked contractions in DSM isolated strips. The acetylcholinesterase inhibitor, eserine (10 µM), increased EFS-induced DSM contractions, and the subsequent addition of H-89 attenuated the contractions. H-89 (10 µM) significantly increased DSM phasic contractions induced by the cholinergic agonist carbachol. The inhibition of PKA decreased the neuronal release of ACh in DSM tissues. This study revealed that PKA-mediated signaling pathways differentially regulate nerve-evoked and spontaneous phasic contractions of guinea pig DSM. Constitutively active PKA in the bladder nerves controls synaptic ACh release, thus regulating the nerve-evoked DSM contractions, whereas PKA in DSM cells controls the spontaneous phasic contractility.


Assuntos
Acetilcolina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Neurônios/metabolismo , Bexiga Urinária/metabolismo , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Estimulação Elétrica , Cobaias , Isoquinolinas/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fisostigmina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Bexiga Urinária/efeitos dos fármacos
3.
Am J Physiol Renal Physiol ; 310(10): F994-9, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26911851

RESUMO

Large-conductance Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) function. We aimed to investigate phosphodiesterase type 1 (PDE1) interactions with BK channels in human DSM to determine the mechanism by which PDE1 regulates human urinary bladder physiology. A combined electrophysiological, functional, and pharmacological approach was applied using human DSM specimens obtained from open bladder surgeries. The perforated whole cell patch-clamp technique was used to record transient BK currents (TBKCs) and the cell membrane potential in freshly isolated human DSM cells in combination with the selective PDE1 inhibitor, 8-methoxymethyl-3-isobutyl-1-methylxanthine (8MM-IBMX). Isometric DSM tension recordings were used to measure spontaneous phasic and electrical field stimulation-induced contractions in human DSM isolated strips. Selective pharmacological inhibition of PDE1 with 8MM-IBMX (10 µM) increased TBKC activity in human DSM cells, which was abolished by subsequent inhibition of protein kinase A (PKA) with H-89 (10 µM). The stimulatory effect of 8MM-IBMX on TBKCs was reversed upon activation of muscarinic acetylcholine receptors with carbachol (1 µM). 8MM-IBMX (10 µM) hyperpolarized the DSM cell membrane potential, an effect blocked by PKA inhibition. 8MM-IBMX significantly decreased spontaneous phasic and nerve-evoked contractions of human DSM isolated strips. The results reveal a novel mechanism that pharmacological inhibition of PDE1 attenuates human DSM excitability and contractility by activating BK channels via a PKA-dependent mechanism. The data also suggest interactions between PDE1 and muscarinic signaling pathways in human DSM. Inhibition of PDE1 can be a novel therapeutic approach for the treatment of overactive bladder associated with detrusor overactivity.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Fosfodiesterase I/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Xantinas/farmacologia , Idoso , Carbacol , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Técnicas In Vitro , Isoquinolinas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Fosfodiesterase I/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas , Bexiga Urinária Hiperativa/tratamento farmacológico , Xantinas/uso terapêutico
4.
Pulm Pharmacol Ther ; 41: 1-10, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27603231

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter employed for intra- and inter-cellular communication in almost all organ systems. This study investigates the role of endogenous H2S in nerve-evoked relaxation of pig terminal bronchioles with 260 µm medium internal lumen diameter. High expression of the H2S synthesis enzyme cystathionine γ-lyase (CSE) in the bronchiolar muscle layer and strong CSE-immunoreactivity within nerve fibers distributed along smooth muscle bundles were observed. Further, endogenous H2S generated in bronchiolar membranes was reduced by CSE inhibition. In contrast, cystathionine ß-synthase expression, another H2S synthesis enzyme, however was not consistently detected in the bronchiolar smooth muscle layer. Electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked smooth muscle relaxation. Inhibition of CSE, nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and of ATP-dependent K+, transient receptor potential A1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels reduced the EFS relaxation but failed to modify the GYY4137 response. Raising extracellular K+ concentration inhibited the GYY4137 relaxation. Large conductance Ca2+-activated K+ channel blockade reduced both EFS and GYY4137 responses. GYY4137 inhibited the contractions induced by histamine and reduced to a lesser extent the histamine-induced increases in intracellular [Ca2+]. These results suggest that relaxation induced by EFS in the pig terminal bronchioles partly involves the H2S/CSE pathway. H2S response is produced via NO/sGC-independent mechanisms involving K+ channels and intracellular Ca2+ desensitization-dependent pathways. Thus, based on our current results H2S donors might be useful as bronchodilator agents for the treatment of lung diseases with persistent airflow limitation, such as asthma and chronic obstructive lung disease.


Assuntos
Bronquíolos/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Histamina/metabolismo , Masculino , Morfolinas/farmacologia , Relaxamento Muscular/fisiologia , Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Compostos Organotiofosforados/farmacologia , Canais de Potássio/metabolismo , Suínos
5.
Neurourol Urodyn ; 35(1): 115-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25327836

RESUMO

AIMS: Neuronal and non-neuronal bradykinin (BK) receptors regulate the contractility of the bladder urine outflow region. The current study investigates the role of BK receptors in the regulation of the smooth muscle contractility of the pig intravesical ureter. METHODS: Western blot and immunohistochemistry were used to show the expression of BK B1 and B2 receptors and myographs for isometric force recordings. RESULTS: B2 receptor expression was consistently detected in the intravesical ureter urothelium and smooth muscle layer, B1 expression was not detected where a strong B2 immunoreactivity was observed within nerve fibers among smooth muscle bundles. On ureteral strips basal tone, BK induced concentration-dependent contractions, were potently reduced by extracellular Ca(2+) removal and by B2 receptor and voltage-gated Ca(2+) (VOC) channel blockade. BK contraction did not change as a consequence of urothelium mechanical removal or cyclooxygenase and Rho-associated protein kinase inhibition. On 9,11-dideoxy-9a,11a-methanoepoxy prostaglandin F2α (U46619)-precontracted samples, under non-adrenergic non-cholinergic (NANC) and nitric oxide (NO)-independent NANC conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. Kallidin, a B1 receptor agonist, failed to increase preparation basal tension or to induce relaxation on U46619-induced tone. CONCLUSIONS: The present results suggest that BK produces contraction of pig intravesical ureter via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry mainly via VOC (L-type) channels. Facilitatory neuronal B2 receptors modulating NO-dependent or independent NANC inhibitory neurotransmission are also demonstrated.


Assuntos
Contração Muscular/fisiologia , Músculo Liso/metabolismo , Receptor B2 da Bradicinina/metabolismo , Ureter/metabolismo , Animais , Bradicinina/farmacologia , Feminino , Calidina/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Receptor B1 da Bradicinina/metabolismo , Suínos , Ureter/efeitos dos fármacos , Urotélio/efeitos dos fármacos , Urotélio/metabolismo , Vasodilatadores/farmacologia
6.
Am J Physiol Cell Physiol ; 309(2): C107-16, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25948731

RESUMO

Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca(2+) imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na(+) channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca(2+) channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca(2+) transients and basal Ca(2+) levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Contração Isométrica/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Morfolinas/farmacologia , Músculo Liso/efeitos dos fármacos , Compostos Organotiofosforados/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Bexiga Urinária/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Fibras Colinérgicas/metabolismo , Relação Dose-Resposta a Droga , Cobaias , Técnicas In Vitro , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Potenciais da Membrana , Músculo Liso/inervação , Músculo Liso/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo
7.
Am J Physiol Cell Physiol ; 307(12): C1142-50, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25318105

RESUMO

The elevation of protein kinase A (PKA) activity activates the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in urinary bladder smooth muscle (UBSM) cells and consequently attenuates spontaneous phasic contractions of UBSM. However, the role of constitutive PKA activity in UBSM function has not been studied. Here, we tested the hypothesis that constitutive PKA activity is essential for controlling the excitability and contractility of UBSM. We used patch clamp electrophysiology, line-scanning confocal and ratiometric fluorescence microscopy on freshly isolated guinea pig UBSM cells, and isometric tension recordings on freshly isolated UBSM strips. Pharmacological inhibition of the constitutive PKA activity with H-89 or PKI 14-22 significantly reduced the frequency and amplitude of spontaneous transient BK channel currents (TBKCs) in UBSM cells. Confocal and ratiometric fluorescence microscopy studies revealed that inhibition of constitutive PKA activity with H-89 reduced the frequency and amplitude of the localized Ca(2+) sparks but increased global Ca(2+) levels and the magnitude of Ca(2+) oscillations in UBSM cells. H-89 abolished the spontaneous transient membrane hyperpolarizations and depolarized the membrane potential in UBSM cells. Inhibition of PKA with H-89 or KT-5720 also increased the amplitude and muscle force of UBSM spontaneous phasic contractions. This study reveals the novel concept that constitutive PKA activity is essential for controlling localized Ca(2+) signals generated by intracellular Ca(2+) stores and cytosolic Ca(2+) levels. Furthermore, constitutive PKA activity is critical for mediating the spontaneous TBKCs in UBSM cells, where it plays a key role in regulating spontaneous phasic contractions in UBSM.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular , Músculo Liso/enzimologia , Bexiga Urinária/enzimologia , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Cobaias , Masculino , Potenciais da Membrana , Microscopia Confocal , Microscopia de Fluorescência , Contração Muscular/efeitos dos fármacos , Força Muscular , Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Tempo , Bexiga Urinária/efeitos dos fármacos
8.
J Sex Med ; 11(4): 930-941, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24754330

RESUMO

INTRODUCTION: Phosphodiesterase type 5 (PDE5) inhibitors act as effective drugs for the treatment of lower urinary tract symptom (LUTS). There is a poor information, however, about the role of the PDE4 inhibitors on the bladder outflow region contractility. AIM: To investigate PDE4 expression and the relaxation induced by the PDE4 inhibitor rolipram versus that induced by the PDE5 blockers sildenafil and vardenafil, in the pig and human bladder neck. METHODS: Immunohistochemistry for PDE4 expression, myographs for isometric force recordings and fura-2 fluorescence for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i ) and tension for rolipram in bladder neck samples were used. MAIN OUTCOME MEASURES: PDE4 expression and relaxations to PDE4 and PDE5 inhibitors and simultaneous measurements of [Ca2+]i and tension. RESULTS: PDE4 expression was observed widely distributed in the smooth muscle layer of the pig and human bladder neck. On urothelium-denuded phenylephrine (PhE)-precontracted strips of pig and human, rolipram, sildenafil and vardenafil produced concentration-dependent relaxations with the following order of potency: rolipram> > sildenafil>vardenafil. In pig, the adenylyl cyclase activator forskolin potentiated rolipram-elicited relaxation, whereas protein kinase A (PKA) blockade reduced such effect. On potassium-enriched physiological saline solution (KPSS)-precontracted strips, rolipram evoked a lower relaxation than that obtained on PhE-stimulated preparations. Inhibition of large (BKCa ) and intermediate (IKCa ) conductance Ca2+ -activated K+ channels, neuronal voltage-gated Ca2+ channels, nitric oxide (NO) and hydrogen sulfide (H2 S) synthases reduced rolipram responses. Rolipram inhibited the contractions induced by PhE without reducing the PhE-evoked [Ca2+]i increase. CONCLUSIONS: PDE4 is present in the pig and human bladder neck smooth muscle, where rolipram exerts a much more potent relaxation than that elicited by PDE5 inhibitors. In pig, rolipram-induced response is produced through the PKA pathway involving BKCa and IKCa channel activation and [Ca2+]i desensitization-dependent mechanisms, this relaxation also being due to neuronal NO and H2S release.


Assuntos
Inibidores da Fosfodiesterase 4/farmacologia , Rolipram/farmacologia , Bexiga Urinária/efeitos dos fármacos , Adulto , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Imidazóis/farmacologia , Masculino , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Fenilefrina/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Purinas/farmacologia , Transdução de Sinais/fisiologia , Citrato de Sildenafila , Sulfonas/farmacologia , Sus scrofa , Triazinas/farmacologia , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Dicloridrato de Vardenafila
9.
Neurourol Urodyn ; 33(5): 558-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23846981

RESUMO

AIMS: The current study investigates the role played by bradykinin (BK) receptors in the contractility to the pig bladder neck smooth muscle. METHODS: Bladder neck strips were mounted in myographs for isometric force recordings and BK receptors expression was also determined by immunohistochemistry. RESULTS: B2 receptor expression was observed in the muscular layer and urothelium whereas B1 expression was consistent detected in urothelium. A strong B2 immunoreactivity was also observed within nerve fibers among smooth muscle bundles. On urothelium-denuded preparations basal tone, BK induced concentration-dependent contractions which were reduced in urothelium-intact samples, by extracellular Ca(2+) removal and by blockade of B2 receptors and voltage-gated Ca(2+) (VOC) and non-VOC channels, and increased by cyclooxygenase (COX) inhibition. On phenylephrine-precontracted denuded strips, under non-adrenergic non-cholinergic (NANC) conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. In urothelium-intact samples, the B1 receptor agonist kallidin promoted concentration-dependent relaxations which were reduced by blockade of B1 receptors, COX, COX-1 and large-conductance Ca(2+) -activated K(+) (BKCa ) channels and abolished in urothelium-denuded samples and in K(+) -enriched physiological saline solution-precontracted strips. CONCLUSIONS: These results suggest that BK produces contraction of pig bladder neck via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry via VOC and non-VOC channels with a minor role for intracellular Ca(2+) mobilization. Facilitatory neuronal B2 receptors modulating NANC inhibitory neurotransmission and urothelial B1 receptors producing relaxation via the COX-1 pathway and BKCa channel opening are also demonstrated. Neurourol. Urodynam. 33:558-565, 2014. © 2013 Wiley Periodicals, Inc.


Assuntos
Cálcio/metabolismo , Contração Muscular/fisiologia , Relaxamento Muscular/fisiologia , Músculo Liso/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Animais , Bradicinina/farmacologia , Antagonistas dos Receptores da Bradicinina/farmacologia , Canais de Cálcio/metabolismo , Ciclo-Oxigenase 1/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Contração Isométrica/efeitos dos fármacos , Contração Isométrica/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Transdução de Sinais , Suínos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Urotélio/efeitos dos fármacos
10.
J Urol ; 190(2): 746-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23454157

RESUMO

PURPOSE: Because neuronal released endogenous H2S has a key role in relaxation of the bladder outflow region, we investigated the mechanisms involved in H2S dependent inhibitory neurotransmission to the pig bladder neck. MATERIALS AND METHODS: Bladder neck strips were mounted in myographs for isometric force recording and simultaneous measurement of intracellular Ca(2+) and tension. RESULTS: On phenylephrine contracted preparations electrical field stimulation and the H2S donor GYY4137 evoked frequency and concentration dependent relaxation, which was reduced by desensitizing capsaicin sensitive primary afferents with capsaicin, and the blockade of adenosine 5'-triphosphate dependent K(+) channels, cyclooxygenase and cyclooxygenase-1 with glibenclamide, indomethacin and SC560, respectively. Inhibition of vanilloid, transient receptor potential A1, transient receptor potential vanilloid 1, vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide and calcitonin gene-related peptide receptors with capsazepine, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively, also decreased electrical field stimulation and GYY4137 responses. H2S relaxation was not changed by guanylyl cyclase, protein kinase A, or Ca(2+) activated or voltage gated K(+) channel inhibitors. GYY4137 inhibited the contractions induced by phenylephrine and by K(+) enriched (80 mM) physiological saline solution. To a lesser extent it decreased the phenylephrine and K(+) induced increases in intracellular Ca(2+). CONCLUSIONS: H2S produces pig bladder neck relaxation via activation of adenosine 5'-triphosphate dependent K(+) channel and by smooth muscle intracellular Ca(2+) desensitization dependent mechanisms. H2S also promotes the release of sensory neuropeptides and cyclooxygenase-1 pathway derived prostanoids from capsaicin sensitive primary afferents via transient receptor potential A1, transient receptor potential vanilloid 1 and/or related ion channel activation.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Canais KATP/metabolismo , Músculo Liso/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Acetanilidas/farmacologia , Acrilamidas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Estimulação Elétrica , Glibureto/farmacologia , Guanilato Ciclase/farmacologia , Indometacina/farmacologia , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Fenilefrina/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Suínos
11.
J Urol ; 189(4): 1567-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23063804

RESUMO

PURPOSE: We investigated the possible involvement of H2S in nitric oxide independent inhibitory neurotransmission to the pig bladder neck. MATERIALS AND METHODS: We used immunohistochemistry to determine the expression of the H2S synthesis enzymes cystathionine γ-lyase and cystathionine ß-synthase. We also used electrical field stimulation and myographs for isometric force recordings to study relaxation in response to endogenously released or exogenously applied H2S in urothelium denuded, phenylephrine precontracted bladder neck strips under noradrenergic, noncholinergic, nonnitrergic conditions. RESULTS: Cystathionine γ-lyase and cystathionine ß-synthase expression was observed in nerve fibers in the smooth muscle layer. Cystathionine γ-lyase and cystathionine ß-synthase immunoreactive fibers were also identified around the small arteries supplying the bladder neck. Electrical field stimulation (2 to 16 Hz) evoked frequency dependent relaxation, which was decreased by DL-propargylglycine and abolished by tetrodotoxin (blockers of cystathionine γ-lyase and neuronal voltage gated Na(+) channels, respectively). The cystathionine ß-synthase inhibitor O-(carboxymethyl)hydroxylamine did not change nerve mediated responses. The H2S donor GYY4137 (0.1 nM to 10 µM) induced potent, concentration dependent relaxation, which was not modified by neuronal voltage gated Na(+) channels, or cystathionine γ-lyase or cystathionine ß-synthase blockade. CONCLUSIONS: Results suggest that endogenous H2S synthesized by cystathionine γ-lyase and released from intramural nerves acts as a powerful signaling molecule in nitric oxide independent inhibitory transmission to the pig bladder neck.


Assuntos
Sulfeto de Hidrogênio , Transmissão Sináptica/fisiologia , Bexiga Urinária/fisiologia , Animais , Feminino , Sulfeto de Hidrogênio/metabolismo , Masculino , Suínos
12.
Aging Dis ; 14(4): 1105-1122, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163425

RESUMO

The aging process is accompanied by a continuous decline of the cardiac system, disrupting the homeostatic regulation of cells, organs, and systems. Aging increases the prevalence of cardiovascular diseases, thus heart failure and mortality. Understanding the cardiac aging process is of pivotal importance once it allows us to design strategies to prevent age-related cardiac events and increasing the quality of live in the elderly. In this review we provide an overview of the cardiac aging process focus on the following topics: cardiac structural and functional modifications; cellular mechanisms of cardiac dysfunction in the aging; genetics and epigenetics in the development of cardiac diseases; and aging heart and response to the exercise.

13.
Biochem Pharmacol ; 215: 115754, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597814

RESUMO

Bitter taste receptors (TAS2R) are found in numerous extra-oral tissues, including smooth muscle (SM) cells in both vascular and visceral tissues. Upon activation, TAS2R stimulate the relaxation of the SM. Nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway is involved in penile erection, and type 5 phosphodiesterase (PDE5) inhibitors, a cGMP-specific hydrolase are used as first-line treatments for erectile dysfunction (ED). Nevertheless, PDE5 inhibitors are ineffective in a considerable number of patients, prompting research into alternative pharmacological targets for ED. Since TAS2R agonists regulate SM contractility, this study investigates the role of TAS2Rs in rat corpus cavernosum (CC). We performed immunohistochemistry to detect TAS2R10, isometric force recordings for TAS2R agonists denatonium and chloroquine, the slow-release H2S donor GYY 4137, the NO donor SNAP, the ß-adrenoceptor agonist isoproterenol and electrical field stimulation (EFS), as well as measurement of endogenous hydrogen sulfide (H2S) production. The immunofluorescence staining indicated that TAS2R10 was broadly expressed in the CC SM and to some extent in the nerve fibers. Denatonium, chloroquine, SNAP, and isoproterenol cause potent dose-dependent SM relaxations. H2S production was decreased by NO and H2S synthase inhibitors, while it was enhanced by denatonium. In addition, denatonium increased the relaxations induced by GYY 4137 and SNAP but failed to modify EFS- and isoproterenol-induced responses. These results suggest neuronal and SM TAS2R10 expression in the rat CC, where denatonium induces a strong SM relaxation per se and promotes the H2S- and NO-mediated inhibitory gaseous neurotransmission. Thus, TAS2R10 might represent a valuable therapeutic target in ED.


Assuntos
Cloroquina , Paladar , Masculino , Animais , Ratos , Isoproterenol , GMP Cíclico
14.
Oxid Med Cell Longev ; 2023: 9979397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865350

RESUMO

Arterial hypertension promotes urological complications by modifying the functional capacity of the urinary bladder. On the other hand, physical exercise has been suggested as a nonpharmacological tool to improve blood pressure regulation. High-intensity interval training (HIIT) can effectively increase peak oxygen consumption, body composition, physical fitness, and health-related characteristics of adults; however, its action on the urinary bladder is little discussed. In the present study, we verified the effect of HIIT on the modulation of the redox state, morphology, and inflammatory and apoptotic processes of the urinary bladder of hypertensive rats. Spontaneously hypertensive rats (SHR) were divided into two groups: SHR sedentary and SHR submitted to HIIT. Arterial hypertension promoted an increase in the plasma redox state, modified the volume of the urinary bladder, and increased collagen deposition in detrusor muscle. It was also possible to identify, in the sedentary SHR group, an increase in inflammatory markers such as IL-6 and TNF-α in the urinary bladder, as well as a reduction in BAX expression. However, in the HIIT group, reduced blood pressure levels were observed, together with an improvement in morphology, such as a decrease in collagen deposition. HIIT also regulated the proinflammatory response, promoting increases in IL-10 and BAX expressions and in the number of plasma antioxidant enzymes. The present work highlights the intracellular pathways involved with the oxidative and inflammatory capacity of the urinary bladder and the potential effect of HIIT on the regulation of the urothelium and detrusor muscle of hypertensive rats.


Assuntos
Treinamento Intervalado de Alta Intensidade , Hipertensão , Condicionamento Físico Animal , Bexiga Urinária , Animais , Ratos , Proteína X Associada a bcl-2 , Hipertensão/complicações , Hipertensão/terapia , Ratos Endogâmicos SHR
15.
Neurourol Urodyn ; 31(1): 156-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21953705

RESUMO

AIMS: There is no information about the signaling pathways involved in the endothelin-1 (ET-1)-induced contraction of bladder neck. The current study investigates the mechanisms involved in the ET-1-elicited contraction in the pig bladder neck. METHODS: Bladder neck strips were mounted in organ baths containing physiological saline solution at 37°C and gassed with 95% O(2) and 5% CO(2) , for isometric force recording to endothelin receptor agonists, noradrenaline (NA), and electrical field stimulation. Endothelin ET(A) receptor expression was also determined, by both immunohistochemistry and Western blot. RESULTS: ET(A) receptor expression (Western blot) was observed in the muscular layer and urothelium. A strong ET(A) -immunoreactivity (ET(A) -IR) was identified within nerve fibers among smooth muscle bundles. ET-1 and ET-2 evoked similar concentration-dependent contractions of urothelium-denuded preparations. ET-3 produced a slight response, whereas the ET(B) receptor agonist BQ3020 failed to promote contraction. BMS182874, an ET(A) receptor antagonist, reduced ET-1-induced contraction whereas BQ788, an ET(B) antagonist, did not change such responses. ET-1 contractions were reduced by extracellular Ca(2+) removal and by inhibition of voltage-gated Ca(2+) (VOC) (L-type) and non-VOC channels, Rho/Rho-kinase pathway, and neuronal VOC channels. NA produced contractions which were enhanced by ET-1 threshold concentrations. ET(A) receptor blockade enhanced nitric oxide-dependent nerve-mediated relaxations. CONCLUSIONS: These results suggest that ET-1 produces contraction via muscular ET(A) receptors coupled to extracellular Ca(2+) entry via VOC (L-type) and non-VOC channels. Intracellular Ca(2+) mobilization and a Rho/Rho-kinase pathway could also be involved in these responses. ET-1-evoked potentiation on noradrenergic contraction, and neuronal ET(A) receptors modulating nitrergic inhibitory neurotransmission, are also demonstrated.


Assuntos
Endotelina-1/fisiologia , Contração Muscular/fisiologia , Transdução de Sinais/fisiologia , Bexiga Urinária/fisiologia , Animais , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Estimulação Elétrica , Endotelina-1/farmacologia , Feminino , Masculino , Modelos Animais , Contração Muscular/efeitos dos fármacos , Receptor de Endotelina A/fisiologia , Suínos , Transmissão Sináptica/fisiologia
16.
Neurourol Urodyn ; 31(5): 688-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22460263

RESUMO

AIMS: The involvement of endothelin receptors in the contraction of the lower urinary tract smooth muscle is well established. There is scarce information, however, about endothelin receptors mediating relaxation of the bladder outlet region. The current study investigates the possible existence of endothelin ET(B) receptors involved in the relaxation of pig bladder neck. METHODS: ET(B) receptor expression was determined by immunohistochemistry and urothelium-denuded bladder neck strips were mounted in organ baths for isometric force recording. RESULTS: ET(B) -immunoreactivity (ET(B) -IR) was observed within nerve fibers among smooth muscle bundles and urothelium. BQ3020 (0.01-300 nM), an ET(B) receptor agonist, produced concentration-dependent relaxations which were reduced by BQ788, an ET(B) receptor antagonist, and by inhibitors of protein kinase A (PKA) and large (BK(Ca) )- or small (SK(Ca) )-conductance Ca(2+) -activated K(+) channels. Pretreatment with BK(Ca) or SK(Ca) channel inhibitors plus PKA blocking did not cause further inhibition compared with that exerted by inhibiting BK(Ca) or SK(Ca) channels only. BQ3020-induced relaxation was not modified by blockade of either nitric oxide (NO) synthase, guanylyl cyclase, cyclooxygenase (COX) or of intermediate-conductance Ca(2+) -activated-(IK(Ca) ), ATP-dependent-(K(ATP) ), or voltage-gated-(K(v) ) K(+) channels. Under non-adrenergic non-cholinergic (NANC) conditions, electrical field stimulation (0.5-16 Hz) evoked frequency-dependent relaxations, which were reduced by BQ788 and potentiated by threshold concentrations of BQ3020. CONCLUSIONS: These results suggest that BQ3020 produces relaxation of the pig bladder neck via activation of muscle endothelin ET(B) receptors, NO/cGMP- and COX-independent-, cAMP-PKA pathway-dependent-mechanisms, and involving BK(Ca) and SK(Ca) channel activation. ET(B) receptors are also involved in the NANC inhibitory neurotransmission.


Assuntos
Relaxamento Muscular , Músculo Liso/metabolismo , Receptor de Endotelina B/metabolismo , Bexiga Urinária/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Endotelinas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/inervação , Fibras Nervosas/metabolismo , Neurotransmissores/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor de Endotelina B/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Guanilil Ciclase Solúvel , Suínos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação , Urotélio/metabolismo
17.
Life Sci ; 296: 120432, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219697

RESUMO

AIMS: Nitric oxide (NO) and hydrogen sulfide (H2S) are involved in nerve-mediated corpus cavernosum (CC) relaxation. Expression of phosphodiesterase type 5 (PDE5) and type 4 (PDE4), cyclic guanosine monophosphate (cGMP)- and cyclic adenosine monophosphate (cAMP)-specific, respectively, has been described and PDE5- and PDE4-inhibitors induce cavernous smooth muscle relaxation. Whereas the NO/cGMP signaling pathway is well established in penile erection, the cAMP-mediated mechanism is not fully elucidated. The aim of this study is to investigate the localization and the functional significance of PDE4 in rat CC tone regulation. MAIN METHODS: We performed immunohistochemistry for the detection of the PDE4A isoenzyme. Isometric tension recordings for roflumilast and tadalafil, PDE4 and PDE5 inhibitors, respectively, electrical field stimulation (EFS) and ß-adrenoceptor agonist isoproterenol and endogenous H2S production measurement. KEY FINDINGS: A marked PDE4A expression was detected mainly localized in the nerve cells of the cavernous smooth muscle. Furthermore, roflumilast and tadalafil exhibited strong corpus cavernous relaxations. Endogenous H2S production was decreased by NO and H2S synthase inhibitors and increased by roflumilast. Isoproterenol- and EFS-induced relaxations were increased by roflumilast. SIGNIFICANCE: These results indicate that PDE4A is mainly expressed within the nerves cells of the rat CC, where roflumilast induces a potent corpus cavernous relaxation per se and potentiates the response induced by ß-adrenoceptor activation. The fact that roflumilast enhances H2S production, as well as EFS-elicited responses suggests that PDE4 inhibitors modulate, in a positive feedback fashion, nerve-mediated relaxation induced by gasotransmitters, thus indicating a key role for neuronal PDE4 in penile erection.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Gasotransmissores/metabolismo , Pênis/fisiologia , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Aminopiridinas/administração & dosagem , Animais , Benzamidas/administração & dosagem , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Relação Dose-Resposta a Droga , Sulfeto de Hidrogênio/metabolismo , Masculino , Relaxamento Muscular/efeitos dos fármacos , Nitroarginina/farmacologia , Pênis/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Ratos Wistar , Tadalafila/farmacologia
18.
J Urol ; 186(2): 728-35, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683385

RESUMO

PURPOSE: We studied the role of calcitonin gene-related peptide in nonadrenergic, noncholinergic neurotransmission to the pig bladder neck. MATERIALS AND METHODS: We used immunohistochemical techniques to determine the distribution of calcitonin gene-related peptide immunoreactive fibers as well as organ baths for isometric force recording. We investigated relaxation due to endogenously released or exogenously applied calcitonin gene-related peptide in urothelium denuded phenylephrine precontracted strips treated with guanethidine, atropine and NG-nitro-L-arginine to block noradrenergic neurotransmission, muscarinic receptors and nitric oxide synthase, respectively. RESULTS: Rich calcitonin gene-related peptide immunoreactive innervation was found penetrating through the adventitia and distributed in the suburothelial and muscle layers. Numerous, variable size, varicose calcitonin gene-related peptide immunopositive terminals were seen close below the urothelium. In the muscle layer calcitonin gene-related peptide immunopositive nerves usually appeared as varicose terminals running along muscle fibers. Electrical field stimulation (2 to 16 Hz) and exogenous calcitonin gene-related peptide (0.1 nM to 0.3 µM) evoked frequency and concentration dependent relaxation, respectively. Nerve responses were potentiated by capsaicin, decreased by calcitonin gene-related peptide (8-37) and abolished by tetrodotoxin, capsaicin sensitive primary afferent blockers, calcitonin gene-related peptide receptors and neuronal voltage gated Na+ channels. Calcitonin gene-related peptide-induced relaxation was potentiated by the neuronal voltage gated Ca2+ channels blocker ω-conotoxin-GVIA and decreased by calcitonin gene-related peptide (8-37). Calcitonin gene-related peptide relaxation was not modified by blockade of endopeptidases, nitric oxide synthase, guanylyl cyclase and cyclooxygenase. CONCLUSIONS: Results suggest that calcitonin gene-related peptide is involved in the nonadrenergic, noncholinergic inhibitory neurotransmission of the pig bladder neck, producing relaxation through neuronal and muscle calcitonin gene-related peptide receptors. Nitric oxide/cyclic guanosine monophosphate and cyclooxygenase pathways do not seem to be involved in such responses.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Transmissão Sináptica , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Animais , Feminino , Masculino , Suínos
19.
Purinergic Signal ; 7(4): 413-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21567127

RESUMO

Benign prostatic hypertrophy has been related with glandular ischemia processes and adenosine is a potent vasodilator agent. This study investigates the mechanisms underlying the adenosine-induced vasorelaxation in pig prostatic small arteries. Adenosine receptors expression was determined by Western blot and immunohistochemistry, and rings were mounted in myographs for isometric force recording. A(2A) and A(3) receptor expression was observed in the arterial wall and A(2A)-immunoreactivity was identified in the adventitia-media junction and endothelium. A(1) and A(2B) receptor expression was not obtained. On noradrenaline-precontracted rings, P1 receptor agonists produced concentration-dependent relaxations with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA) = CGS21680 > 2-Cl-IB-MECA = 2-Cl-cyclopentyladenosine = adenosine. Adenosine reuptake inhibition potentiated both NECA and adenosine relaxations. Endothelium removal and ZM241385, an A(2A) antagonist, reduced NECA relaxations that were not modified by A(1), A(2B), and A(3) receptor antagonists. Neuronal voltage-gated Ca(2+) channels and nitric oxide (NO) synthase blockade, and adenylyl cyclase activation enhanced these responses, which were reduced by protein kinase A inhibition and by blockade of the intermediate (IK(Ca))- and small (SK(Ca))-conductance Ca(2+)-activated K(+) channels. Inhibition of cyclooxygenase (COX), large-conductance Ca(2+)-activated-, ATP-dependent-, and voltage-gated-K(+) channel failed to modify these responses. These results suggest that adenosine induces endothelium-dependent relaxations in the pig prostatic arteries via A(2A) purinoceptors. The adenosine vasorelaxation, which is prejunctionally modulated, is produced via NO- and COX-independent mechanisms that involve activation of IK(Ca) and SK(Ca) channels and stimulation of adenylyl cyclase. Endothelium-derived NO playing a regulatory role under conditions in which EDHF is non-functional is also suggested. Adenosine-induced vasodilatation could be useful to prevent prostatic ischemia.

20.
Eur J Pharmacol ; 876: 173063, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199874

RESUMO

Bitter taste receptors (Tas2rs), the members of the G-protein-coupled receptors, mediate the bitter taste and express in extra-oral tissues. Previous studies have shown that Tas2r mRNAs are expressed in the whole heart and cultured cardiomyocytes of neonatal rats. This study aimed to determine the expression of Tas2rs and their function in the adult rat hearts by using RT-qPCR techniques, Langendorff-perfused isolated hearts, and isolated sinoatrial (SA) nodes. The data presented here revealed the mRNA expression of Tas2rs and their coupled G-protein subunits in the SA node and left ventricle of adult rat hearts. Tas2r agonists, quinine and chloroquine, decreased the heart rate and increased the RR interval and QRS duration in Langendorff-perfused isolated rat hearts; they reduced the spontaneous beating rate of isolated SA nodes with pEC50 values of 4.907 ± 0.045 and 4.968 ± 0.030, respectively. The blockade of Tas2r108 with abscisic acid, the inhibition of phosphodiesterases (PDEs) with 3-isobutyl-1-methylxanthine (IBMX), or the selective inhibition of PDE3 and PDE4 with a cocktail of cilostamide and rolipram, attenuated the negative chronotropic effects of quinine and chloroquine on the SA node. Furthermore, quinine and chloroquine suppressed the tachycardia effect of isoprenaline on the SA node and shifted the concentration-response curve of isoprenaline rightward. In summary, we provided a few lines of evidence that Tas2r agonists, quinine and chloroquine, decreased the heart rate by prolonging ventricular depolarization, and by attenuating the SA node pace in a PDE-dependent manner; they can counteract with ß-adrenergic receptor activation and eliminate isoprenaline-induced tachycardia.


Assuntos
Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Nó Sinoatrial/efeitos dos fármacos , Animais , Cloroquina/farmacologia , Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Técnicas In Vitro , Preparação de Coração Isolado , Masculino , Subunidades Proteicas , Quinina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Nó Sinoatrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA