Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(12): 244, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957405

RESUMO

KEY MESSAGE: Association mapping conducted in 189 Spanish bread wheat landraces revealed six key genomic regions that constitute stable QTLs for yield and include 15 candidate genes. Genetically diverse landraces provide an ideal population to conduct association analysis. In this study, association mapping was conducted in a collection of 189 Spanish bread wheat landraces whose genomic diversity had been previously assessed. These genomic data were combined with characterization for yield-related traits, including grain size and shape, and phenological traits screened across five seasons. The association analysis revealed a total of 881 significant marker trait associations, involving 434 markers across the genome, that could be grouped in 366 QTLs based on linkage disequilibrium. After accounting for days to heading, we defined 33 high density QTL genomic regions associated to at least four traits. Considering the importance of detecting stable QTLs, 6 regions associated to several grain traits and thousand kernel weight in at least three environments were selected as the most promising ones to harbour targets for breeding. To dissect the genetic cause of the observed associations, we studied the function and in silico expression of the 413 genes located inside these six regions. This identified 15 candidate genes that provide a starting point for future analysis aimed at the identification and validation of wheat yield related genes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Triticum/genética , Pão , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Genômica
2.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204625

RESUMO

Bacteria have evolved sophisticated signaling mechanisms to coordinate interactions with organisms of other domains, such as plants, animals and human hosts. Several important signal molecules have been identified that are synthesized by members of different domains and that play important roles in inter-domain communication. In this article, we review recent data supporting that histamine is a signal molecule that may play an important role in inter-domain and inter-species communication. Histamine is a key signal molecule in humans, with multiple functions, such as being a neurotransmitter or modulator of immune responses. More recent studies have shown that bacteria have evolved different mechanisms to sense histamine or histamine metabolites. Histamine sensing in the human pathogen Pseudomonas aeruginosa was found to trigger chemoattraction to histamine and to regulate the expression of many virulence-related genes. Further studies have shown that many bacteria are able to synthesize and secrete histamine. The release of histamine by bacteria in the human gut was found to modulate the host immune responses and, at higher doses, to result in host pathologies. The elucidation of the role of histamine as an inter-domain signaling molecule is an emerging field of research and future investigation is required to assess its potential general nature.


Assuntos
Bactérias/metabolismo , Histamina/metabolismo , Transdução de Sinais , Animais , Bactérias/genética , Liberação de Histamina , Humanos , Modelos Biológicos , Modelos Moleculares
3.
BMC Genomics ; 21(1): 122, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019507

RESUMO

BACKGROUND: One of the main goals of the plant breeding in the twenty-first century is the development of crop cultivars that can maintain current yields in unfavorable environments. Landraces that have been grown under varying local conditions include genetic diversity that will be essential to achieve this objective. The Center of Plant Genetic Resources of the Spanish Institute for Agriculture Research maintains a broad collection of wheat landraces. These accessions, which are locally adapted to diverse eco-climatic conditions, represent highly valuable materials for breeding. However, their efficient use requires an exhaustive genetic characterization. The overall aim of this study was to assess the diversity and population structure of a selected set of 380 Spanish landraces and 52 reference varieties of bread and durum wheat by high-throughput genotyping. RESULTS: The DArTseq GBS approach generated 10 K SNPs and 40 K high-quality DArT markers, which were located against the currently available bread and durum wheat reference genomes. The markers with known locations were distributed across all chromosomes with relatively well-balanced genome-wide coverage. The genetic analysis showed that the Spanish wheat landraces were clustered in different groups, thus representing genetic pools providing a range of allelic variation. The subspecies had a major impact on the population structure of the durum wheat landraces, with three distinct clusters that corresponded to subsp. durum, turgidum and dicoccon being identified. The population structure of bread wheat landraces was mainly biased by geographic origin. CONCLUSIONS: The results showed broader genetic diversity in the landraces compared to a reference set that included commercial varieties, and higher divergence between the landraces and the reference set in durum wheat than in bread wheat. The analyses revealed genomic regions whose patterns of variation were markedly different in the landraces and reference varieties, indicating loci that have been under selection during crop improvement, which could help to target breeding efforts. The results obtained from this work will provide a basis for future genome-wide association studies.


Assuntos
Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Alelos , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Desequilíbrio de Ligação/genética , Melhoramento Vegetal/métodos , Análise de Sequência de DNA/métodos
4.
Hum Mutat ; 40(7): 975-982, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30908763

RESUMO

D-2-hydroxyglutaric aciduria Type I (D-2-HGA Type I), a neurometabolic disorder with a broad clinical spectrum, is caused by recessive variants in the D2HGDH gene encoding D-2-hydroxyglutarate dehydrogenase (D-2-HGDH). We and others detected 42 potentially pathogenic variants in D2HGDH of which 31 were missense. We developed functional studies to investigate the effect of missense variants on D-2-HGDH catalytic activity. Site-directed mutagenesis was used to introduce 31 missense variants in the pCMV5-D2HGDH expression vector. The wild type and missense variants were overexpressed in HEK293 cells. D-2-HGDH enzyme activity was evaluated based on the conversion of [2 H4 ]D-2-HG to [2 H4 ]2-ketoglutarate, which was subsequently converted into [2 H4 ]L-glutamate and the latter quantified by LC-MS/MS. Eighteen variants resulted in almost complete ablation of D-2-HGDH activity and thus, should be considered pathogenic. The remaining 13 variants manifested residual activities ranging between 17% and 94% of control enzymatic activity. Our functional assay evaluating the effect of novel D2HGDH variants will be beneficial for the classification of missense variants and determination of pathogenicity.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Encefalopatias Metabólicas Congênitas/genética , Mutação de Sentido Incorreto , Encefalopatias Metabólicas Congênitas/metabolismo , Cromatografia Líquida , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Espectrometria de Massas em Tandem , Anormalidades Urogenitais
5.
Support Care Cancer ; 27(10): 3823-3831, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30734089

RESUMO

PURPOSE: Neuromuscular electrical stimulation (NMES) may be a pragmatic short-term alternative to voluntary exercise to augment cancer rehabilitation. However, previous attempts to use NMES as an exercise modality in this cohort have been unsuccessful, largely due to the use of NMES protocols that were developed for other rehabilitation contexts. We assessed the effects of a personalised and progressive NMES exercise intervention, designed with early-stage cancer rehabilitation in mind, on exercise capacity, lower body functional strength and quality of life in (QoL) in patients who are currently undergoing or have recently completed treatment for cancer. METHODS: Ten adult patients were recruited. A personalised and progressive NMES exercise intervention was implemented in each case over a 4-8-week period. The 30-s sit-to-stand test (STS), 6-min walk test (6MWT) and EORTC QLQ C-30 were performed pre- and post-intervention. Patients completed semi-structured interviews post-intervention to explore their experiences and views on the intervention and its impact on their daily lives. RESULTS: Six of the 10 recruited patients completed the intervention and completed pre-and post-assessments. Four of 6 patients improved STS, 5 of 6 patients improved 6MWT and 4 of 6 patients improved Global QoL. Perceived benefits included improved muscle strength and more confidence when walking. CONCLUSION: A personalised and progressive NMES exercise intervention appears safe and may improve functional capacity and QoL in adults who are undergoing or have recently completed treatment for cancer. Replication of these results in a controlled prospective study is warranted prior to clinical implementation.


Assuntos
Sobreviventes de Câncer/estatística & dados numéricos , Terapia por Estimulação Elétrica/métodos , Estimulação Elétrica/métodos , Exercício Físico/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Força Muscular/fisiologia , Neoplasias/fisiopatologia , Neoplasias/reabilitação , Estudos Prospectivos , Qualidade de Vida , Projetos de Pesquisa , Caminhada/fisiologia
6.
J Med Internet Res ; 21(10): e14360, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31663861

RESUMO

The evidence that quality of life is a positive variable for the survival of cancer patients has prompted the interest of the health and pharmaceutical industry in considering that variable as a final clinical outcome. Sustained improvements in cancer care in recent years have resulted in increased numbers of people living with and beyond cancer, with increased attention being placed on improving quality of life for those individuals. Connected Health provides the foundations for the transformation of cancer care into a patient-centric model, focused on providing fully connected, personalized support and therapy for the unique needs of each patient. Connected Health creates an opportunity to overcome barriers to health care support among patients diagnosed with chronic conditions. This paper provides an overview of important areas for the foundations of the creation of a new Connected Health paradigm in cancer care. Here we discuss the capabilities of mobile and wearable technologies; we also discuss pervasive and persuasive strategies and device systems to provide multidisciplinary and inclusive approaches for cancer patients for mental well-being, physical activity promotion, and rehabilitation. Several examples already show that there is enthusiasm in strengthening the possibilities offered by Connected Health in persuasive and pervasive technology in cancer care. Developments harnessing the Internet of Things, personalization, patient-centered design, and artificial intelligence help to monitor and assess the health status of cancer patients. Furthermore, this paper analyses the data infrastructure ecosystem for Connected Health and its semantic interoperability with the Connected Health economy ecosystem and its associated barriers. Interoperability is essential when developing Connected Health solutions that integrate with health systems and electronic health records. Given the exponential business growth of the Connected Health economy, there is an urgent need to develop mHealth (mobile health) exponentially, making it both an attractive and challenging market. In conclusion, there is a need for user-centered and multidisciplinary standards of practice to the design, development, evaluation, and implementation of Connected Health interventions in cancer care to ensure their acceptability, practicality, feasibility, effectiveness, affordability, safety, and equity.


Assuntos
Inteligência Artificial/normas , Aprendizado de Máquina/normas , Neoplasias/psicologia , Qualidade de Vida/psicologia , Telemedicina/métodos , Humanos , Apoio Social , Dispositivos Eletrônicos Vestíveis
7.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627455

RESUMO

Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.


Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa/química , Calorimetria , Quimiotaxia , Biologia Computacional , Ligantes , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais
8.
Environ Microbiol ; 20(12): 4230-4244, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30051572

RESUMO

The interference of plant compounds with bacterial quorum sensing (QS) is a major mechanism through which plants and bacteria communicate. However, little is known about the modes of action and effects on signal integrity during this type of communication. We have recently shown that the plant compound rosmarinic acid (RA) specifically binds to the Pseudomonas aeruginosa RhlR QS receptor. To determine the effect of RA on expression patterns, we carried out global RNA-seq analysis. The results show that RA induces the expression of 128 genes, amongst which many virulence factor genes. RA triggers a broad QS response because 88% of the induced genes are known to be controlled by QS, and because RA stimulated genes were found to be involved in all four QS signalling systems within P. aeruginosa. This finding was confirmed through the analysis of transcriptional fusions transferred to wt and a rhlI/lasI double mutant. RA did not induce gene expression in the rhlI/lasI/rhlR triple mutant indicating that the effects observed are due to the RA-RhlR interaction. Furthermore, RA induced seven sRNAs that were all encoded in regions close to QS and/or RA induced genes. This work significantly enhances our understanding of plant bacteria interaction.


Assuntos
Cinamatos/farmacologia , Depsídeos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Cinamatos/metabolismo , Depsídeos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ácido Rosmarínico
9.
Int J Mol Sci ; 19(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486299

RESUMO

Bacteria possess a large number of signal transduction systems that sense and respond to different environmental cues. Most frequently these are transcriptional regulators, two-component systems and chemosensory pathways. A major bottleneck in the field of signal transduction is the lack of information on signal molecules that modulate the activity of the large majority of these systems. We review here the progress made in the functional annotation of sensor proteins using high-throughput ligand screening approaches of purified sensor proteins or individual ligand binding domains. In these assays, the alteration in protein thermal stability following ligand binding is monitored using Differential Scanning Fluorimetry. We illustrate on several examples how the identification of the sensor protein ligand has facilitated the elucidation of the molecular mechanism of the regulatory process. We will also discuss the use of virtual ligand screening approaches to identify sensor protein ligands. Both approaches have been successfully applied to functionally annotate a significant number of bacterial sensor proteins but can also be used to study proteins from other kingdoms. The major challenge consists in the study of sensor proteins that do not recognize signal molecules directly, but that are activated by signal molecule-loaded binding proteins.


Assuntos
Bactérias/metabolismo , Anotação de Sequência Molecular , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligantes , Modelos Biológicos
10.
Mol Microbiol ; 99(1): 34-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26355499

RESUMO

Chemotaxis is an essential mechanism that enables bacteria to move toward favorable ecological niches. Escherichia coli, the historical model organism for studying chemotaxis, has five well-studied chemoreceptors. However, many bacteria with different lifestyle have more chemoreceptors, most of unknown function. Using a high throughput screening approach, we identified a chemoreceptor from Pseudomonas putida KT2440, named McpH, which specifically recognizes purine and its derivatives, adenine, guanine, xanthine, hypoxanthine and uric acid. The latter five compounds form part of the purine degradation pathway, permitting their use as sole nitrogen sources. Isothermal titration calorimetry studies show that these six compounds bind McpH-Ligand Binding Domain (LBD) with very similar affinity. In contrast, non-metabolizable purine derivatives (caffeine, theophylline, theobromine), nucleotides, nucleosides or pyrimidines are unable to bind McpH-LBD. Mutation of mcpH abolished chemotaxis toward the McpH ligands identified - a phenotype that is restored by complementation. This is the first report on bacterial chemotaxis to purine derivatives and McpH the first chemoreceptor described that responds exclusively to intermediates of a catabolic pathway, illustrating a clear link between metabolism and chemotaxis. The evolution of McpH may reflect a saprophytic lifestyle, which would have exposed the studied bacterium to high concentrations of purines produced by nucleic acid degradation.


Assuntos
Quimiotaxia , Proteínas de Membrana/metabolismo , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/fisiologia , Purinas/metabolismo , Deleção de Genes , Teste de Complementação Genética , Proteínas de Membrana/genética , Ligação Proteica , Pseudomonas putida/genética
11.
Environ Microbiol ; 18(10): 3355-3372, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26662997

RESUMO

Although it is well established that one- and two-component regulatory systems participate in regulating biofilm formation, there also exists evidence suggesting that chemosensory pathways are also involved. However, little information exists about which chemoreceptors and signals modulate this process. Here we report the generation of the complete set of chemoreceptor mutants of Pseudomonas putida KT2440 and the identification of four mutants with significantly altered biofilm phenotypes. These receptors are a WspA homologue of Pseudomonas aeruginosa, previously identified to control biofilm formation by regulating c-di-GMP levels, and three uncharacterized chemoreceptors. One of these receptors, named McpU, was found to mediate chemotaxis towards different polyamines. The functional annotation of McpU was initiated by high-throughput thermal shift assays of the receptor ligand binding domain (LBD). Isothermal titration calorimetry showed that McpU-LBD specifically binds putrescine, cadaverine and spermidine, indicating that McpU represents a novel chemoreceptor type. Another uncharacterized receptor, named McpA, specifically binds 12 different proteinogenic amino acids and mediates chemotaxis towards these compounds. We also show that mutants in McpU and WspA-Pp have a significantly reduced ability to colonize plant roots. Data agree with other reports showing that polyamines are signal molecules involved in the regulation of bacteria-plant communication and biofilm formation.


Assuntos
Biofilmes , Pseudomonas aeruginosa/fisiologia , Pseudomonas putida/fisiologia , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética
12.
Curr Genet ; 62(1): 143-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26511375

RESUMO

Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Ligantes , Transdução de Sinais , Proteínas de Bactérias/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes
13.
Appl Environ Microbiol ; 82(14): 4133-4144, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208139

RESUMO

UNLABELLED: The remarkable metal resistance of many microorganisms is related to the presence of multiple metal resistance operons. Pseudomonas putida KT2440 can be considered a model for these microorganisms since its arsenic resistance is due to the action of proteins encoded by the two paralogous arsenic resistance operons ARS1 and ARS2. Both operons contain the genes encoding the transcriptional regulators ArsR1 and ArsR2 that control operon expression. We show here that purified ArsR1 and ArsR2 bind the trivalent salt of arsenic (arsenite) with similar affinities (~30 µM), whereas no binding is observed for the pentavalent salt (arsenate). Furthermore, trivalent salts of bismuth and antimony showed binding to both paralogues. The positions of cysteines, found to bind arsenic in other homologues, indicate that ArsR1 and ArsR2 employ different modes of arsenite recognition. Both paralogues are dimeric and possess significant thermal stability. Both proteins were used to construct whole-cell, lacZ-based biosensors. Whereas responses to bismuth were negligible, significant responses were observed for arsenite, arsenate, and antimony. Biosensors based on the P. putida arsB1 arsB2 arsenic efflux pump double mutant were significantly more sensitive than biosensors based on the wild-type strain. This sensitivity enhancement by pump mutation may be a convenient strategy for the construction of other biosensors. A frequent limitation found for other arsenic biosensors was their elevated background signal and interference by inorganic phosphate. The constructed biosensors show no interference by inorganic phosphate, are characterized by a very low background signal, and were found to be suitable to analyze environmental samples. IMPORTANCE: Arsenic is at the top of the priority list of hazardous compounds issued by the U.S. Agency for Toxic Substances and Disease. The reason for the stunning arsenic resistance of many microorganisms is the existence of paralogous arsenic resistance operons. Pseudomonas putida KT2440 is a model organism for such bacteria, and their duplicated ars operons and in particular their ArsR transcription regulators have been studied in depth by in vivo approaches. Here we present an analysis of both purified ArsR paralogues by different biophysical techniques, and data obtained provide valuable insight into their structure and function. Particularly insightful was the comparison of ArsR effector profiles determined by in vitro and in vivo experimentation. We also report the use of both paralogues to construct robust and highly sensitive arsenic biosensors. Our finding that the deletion of both arsenic efflux pumps significantly increases biosensor sensitivity is of general relevance in the biosensor field.


Assuntos
Arsenitos/análise , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Pseudomonas putida/genética , Fatores de Transcrição/metabolismo , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Genes Reporter , Ligação Proteica , Fatores de Transcrição/genética , beta-Galactosidase/análise , beta-Galactosidase/genética
14.
Sensors (Basel) ; 16(4)2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27092501

RESUMO

Partial discharges are ionization processes inside or on the surface of dielectrics that can unveil insulation problems in electrical equipment. The charge accumulated is released under certain environmental and voltage conditions attacking the insulation both physically and chemically. The final consequence of a continuous occurrence of these events is the breakdown of the dielectric. The electron avalanche provokes a derivative of the electric field with respect to time, creating an electromagnetic impulse that can be detected with antennas. The localization of the source helps in the identification of the piece of equipment that has to be decommissioned. This can be done by deploying antennas and calculating the time difference of arrival (TDOA) of the electromagnetic pulses. However, small errors in this parameter can lead to great displacements of the calculated position of the source. Usually, four antennas are used to find the source but the array geometry has to be correctly deployed to have minimal errors in the localization. This paper demonstrates, by an analysis based on simulation and also experimentally, that the most common layouts are not always the best options and proposes a simple antenna layout to reduce the systematic error in the TDOA calculation due to the positions of the antennas in the array.

15.
Mol Microbiol ; 88(6): 1230-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23650915

RESUMO

The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l-amino acids respectively. In addition, PctC-LBR recognized GABA but not any other structurally related compound. l-Gln, one of the three amino acids that is not recognized by PctA-LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l-Gln. Bacteria were efficiently attracted to l-Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (PhoQ/DcuS/CitA) like structures and site-directed mutagenesis studies showed that ligands bind to the membrane-distal module. Analytical ultracentrifugation studies have shown that PctA-LBR and PctB-LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Quimiotaxia , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Mutagênese Sítio-Dirigida , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
16.
Nat Commun ; 15(1): 5867, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997289

RESUMO

Purines and their derivatives control intracellular energy homeostasis and nucleotide synthesis, and act as signaling molecules. Here, we combine structural and sequence information to define a purine-binding motif that is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism, and second-messenger turnover. Microcalorimetric titrations of selected sensor domains validate their ability to specifically bind purine derivatives, and evolutionary analyses indicate that purine sensors share a common ancestor with amino-acid receptors. Furthermore, we provide experimental evidence of physiological relevance of purine sensing in a second-messenger signaling system that modulates c-di-GMP levels.


Assuntos
Proteínas de Bactérias , Purinas , Transdução de Sinais , Purinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Bactérias/metabolismo , Bactérias/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Sistemas do Segundo Mensageiro
17.
Foods ; 13(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611424

RESUMO

A growing interest in the recovery and enhancement of crops, particularly local varieties such as 'Caaveiro' wheat, has been observed. This study aims to investigate the impact of cultivation systems (organic versus conventional) on the nutritional quality of 'Caaveiro' flour and breads protected by the PGI "Pan Galego," employing two fermentation methods (sourdough versus sourdough and biological yeast). Organic flour exhibited significantly higher levels of moisture, fat, sucrose, phosphorus (P), sodium (Na), and copper (Cu) while also exhibiting a lower total starch and zinc (Zn) content. Organic bread, produced using both fermentation methods, demonstrated significantly higher protein, carbohydrate, total, resistant, and rapidly digestible starch, ash, Na, P, iron (Fe), and Cu content. Additionally, they contained less moisture compared to conventional bread. Despite variations in nutritional characteristics based on the cultivation system, the organic approach proved effective at producing high-quality products with a positive environmental impact, which is highly appreciated by consumers.

18.
Environ Microbiol ; 15(3): 780-94, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23206161

RESUMO

Pseudomonas putida BIRD-1 is a plant growth-promoting rhizobacterium whose genome size is 5.7 Mbp. It adheres to plant roots and colonizes the rhizosphere to high cell densities even in soils with low moisture. This property is linked to its ability to synthesize trehalose, since a mutant deficient in the synthesis of trehalose exhibited less tolerance to desiccation than the parental strain. The genome of BIRD-1 encodes a wide range of proteins that help it to deal with reactive oxygen stress generated in the plant rhizosphere. BIRD-1 plant growth-promoting rhizobacteria properties derive from its ability to enhance phosphorous and iron solubilization and to produce phytohormones. BIRD-1 is capable of solubilizing insoluble inorganic phosphate forms through acid production. The genome of BIRD-1 encodes at least five phosphatases related to phosphorous solubilization, one of them being a phytase that facilitates the utilization of phytic acid, the main storage form of phosphorous in plants. Pyoverdine is the siderophore produced by this strain, a mutant that in the FvpD siderophore synthase failed to grow on medium without supplementary iron, but the mutant was as competitive as the parental strain in soils because it captures the siderophores produced by other microbes. BIRD-1 overproduces indole-3-acetic acid through convergent pathways.


Assuntos
Genoma , Pseudomonas putida/genética , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas putida/enzimologia , Pseudomonas putida/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sideróforos/metabolismo
19.
Environ Microbiol ; 15(1): 36-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22458445

RESUMO

We used a combination of in silico and large-scale mutagenesis approaches to expand our current knowledge of the genetic determinants used by Pseudomonas putida KT2440 to attach to surfaces. We first identified in silico orthologues that have been annotated in Pseudomonas aeruginosa as potentially involved in attachment. In this search 67 paired-related genes of P. putida KT2440 and P. aeruginosa were identified as associated to adhesion. To test the potential role of the corresponding gene products in adhesion, 37 knockout mutants of KT2440, available in the Pseudomonas Reference Culture Collection, were analysed with regard to their ability to form biofilms in polystyrene microtitre plates; of these, six mutants were deficient in adhesion. Since mutants in all potential adhesion genes were not available, we generated a genome-wide collection of mutants made of 7684 independent mini-Tn5 insertions and tested them for the formation of biofilm on polystyrene microtitre plates. Eighteen clones that exhibited a reduction of at least twofold in biofilm biomass formation were considered candidate mutants in adhesion determinants. DNA sequencing of the insertion site identified five other new genes involved in adhesion. Phenotypic characterization of the mutants showed that 11 of the inactivated proteins were required for attachment to biotic surfaces too. This combined approach allowed us to identify new proteins with a role in P. putida adhesion, including the global regulator RpoN and GacS, PstS that corresponds to one of the paired-related genes for which a mutant was not available in the mutant collection, and a protein of unknown function (PP1633). The remaining mutants corresponded to functions known or predicted to participate in adhesion based on previous evidence, such as the large adhesion proteins LapA, LapF and flagellar proteins. In silico analysis showed this set of genes to be well conserved in all sequenced P. putida strains, and that at least eight reciprocal genes involved in attachment are shared by P. putida and P. aeruginosa.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Biofilmes , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas putida/genética , Virulência/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genoma Bacteriano/genética , Glucose/metabolismo , Mutação , Pseudomonas aeruginosa/metabolismo , Pseudomonas putida/metabolismo , Rizosfera
20.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961346

RESUMO

Purines and their derivatives are key molecules for controlling intracellular energy homeostasis and nucleotide synthesis. In eukaryotes, including humans, purines also act as signaling molecules that mediate extracellular communication and control key cellular processes, such as proliferation, migration, differentiation, and apoptosis. However, the signaling role of purines in bacteria is largely unknown. Here, by combining structural and sequence information, we define a purine-binding motif, which is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism and second messenger turnover. The screening of compound libraries and microcalorimetric titrations of selected sensor domains validated their ability to specifically bind purine derivatives. The physiological relevance of purine sensing was demonstrated in a second messenger signaling system that modulates c-di-GMP levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA