Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 287(6): 4222-31, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22167184

RESUMO

Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA Arqueal/metabolismo , Sulfolobus solfataricus/enzimologia , Alquil e Aril Transferases/genética , Alquilação/fisiologia , Proteínas Arqueais/genética , DNA Arqueal/genética , Sulfolobus solfataricus/genética
2.
Mol Ther ; 20(12): 2201-11, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22990675

RESUMO

Pompe disease (PD) is a metabolic myopathy due to the deficiency of the lysosomal enzyme α-glucosidase (GAA). The only approved treatment for this disorder, enzyme replacement with recombinant human GAA (rhGAA), has shown limited therapeutic efficacy in some PD patients. Pharmacological chaperone therapy (PCT), either alone or in combination with enzyme replacement, has been proposed as an alternative therapeutic strategy. However, the chaperones identified so far also are active site-directed molecules and potential inhibitors of target enzymes. We demonstrated that N-acetylcysteine (NAC) is a novel allosteric chaperone for GAA. NAC improved the stability of rhGAA as a function of pH and temperature without disrupting its catalytic activity. A computational analysis of NAC-GAA interactions confirmed that NAC does not interact with GAA catalytic domain. NAC enhanced the residual activity of mutated GAA in cultured PD fibroblasts and in COS7 cells overexpressing mutated GAA. NAC also enhanced rhGAA efficacy in PD fibroblasts. In cells incubated with NAC and rhGAA, GAA activities were 3.7-8.7-fold higher than those obtained in cells treated with rhGAA alone. In a PD mouse model the combination of NAC and rhGAA resulted in better correction of enzyme activity in liver, heart, diaphragm and gastrocnemia, compared to rhGAA alone.


Assuntos
Acetilcisteína/uso terapêutico , alfa-Glucosidases/metabolismo , alfa-Glucosidases/uso terapêutico , Acetilcisteína/farmacocinética , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Estabilidade Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Imunofluorescência , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Humanos , Camundongos , Microscopia Confocal , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/uso terapêutico , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA