Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(2): E149-E165, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117267

RESUMO

Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Macrófagos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Metabolismo dos Carboidratos , Glucose/metabolismo , Lipídeos
2.
PLoS Genet ; 17(6): e1009605, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081701

RESUMO

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.


Assuntos
Fígado Gorduroso/genética , Macrófagos/metabolismo , Anormalidades Musculoesqueléticas/genética , Desenvolvimento Musculoesquelético/genética , Osteopetrose/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Modelos Animais de Doenças , Embrião de Mamíferos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/terapia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Anormalidades Musculoesqueléticas/terapia , Osteopetrose/metabolismo , Osteopetrose/patologia , Osteopetrose/terapia , Ratos , Ratos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência
3.
Dig Dis ; 41(3): 439-446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36327947

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is caused by ectopic fat accumulation in the liver as a consequence of metabolic perturbations associated with obesity, type 2 diabetes, dyslipidemia, and insulin resistance. People with NAFLD may develop metabolic and cardiovascular complications and/or liver-related complications, especially fibrosis and hepatocellular carcinoma, associated with high morbidity and mortality. Due to the high and increasing prevalence of NAFLD, there is an urgent need to identify people at risk of developing liver fibrosis and complications. CC-chemokine ligand 2 (CCL2) is chemokine that attracts inflammatory monocytes to stressed or injured tissues. Infiltrating inflammatory monocytes and CCL2 are strongly implicated in the pathogenesis of liver disease in animal models; however, evidence in patient cohorts is conflicting. METHODS: We investigated associations between circulating CCL2 and clinical parameters, including fibrosis assessed by liver stiffness measurement, in a cohort of 250 NAFLD patients. We also measured fatty acid binding protein 2 (FABP2), a putative biomarker of intestinal permeability in patients with liver disease, since pro-inflammatory gut-derived microbial products may induce inflammatory chemokines such as CCL2. RESULTS: Serum CCL2 levels were weakly associated with liver stiffness, but the association was no longer significant after accounting for age, diabetes, and BMI in a multivariable model. Consistent with this, girth and BMI were the strongest predictors of elevated circulating CCL2. Serum FABP2 was weakly, but significantly, correlated with CCL2, and negatively correlated with estimated glomerular filtration rate. CONCLUSION: Circulating CCL2 and FABP2 are associated with NAFLD comorbidities but not liver disease progression in patients with NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Adiposidade , Ligantes , Cirrose Hepática/complicações , Quimiocinas/metabolismo
4.
J Hematol Oncol ; 14(1): 3, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33402221

RESUMO

BACKGROUND: Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. METHODS: We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. RESULTS: CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48-CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48-CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. CONCLUSION: These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hematopoese/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/farmacologia
5.
J Leukoc Biol ; 107(2): 205-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31330095

RESUMO

Mϕ proliferation, differentiation, and survival are controlled by signals from the Mϕ CSF receptor (CSF1R). Mono-allelic gain-of-function mutations in CSF1R in humans are associated with an autosomal-dominant leukodystrophy and bi-allelic loss-of-function mutations with recessive skeletal dysplasia, brain disorders, and developmental anomalies. Most of the phenotypes observed in these human disease states are also observed in mice and rats with loss-of-function mutations in Csf1r or in Csf1 encoding one of its two ligands. Studies in rodent models also highlight the importance of genetic background and likely epistatic interactions between Csf1r and other loci. The impacts of Csf1r mutations on the brain are usually attributed solely to direct impacts on microglial number and function. However, analysis of hypomorphic Csf1r mutants in mice and several other lines of evidence suggest that primary hydrocephalus and loss of the physiological functions of Mϕs in the periphery contribute to the development of brain pathology. In this review, we outline the evidence that CSF1R is expressed exclusively in mononuclear phagocytes and explore the mechanisms linking CSF1R mutations to pleiotropic impacts on postnatal growth and development.


Assuntos
Encefalopatias/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/patologia , Receptores de Fator Estimulador de Colônias/metabolismo , Animais , Encefalopatias/genética , Encefalopatias/metabolismo , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/metabolismo , Morfogênese , Mutação , Fenótipo , Receptores de Fator Estimulador de Colônias/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA