Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Oral Investig ; 27(2): 849-858, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35831626

RESUMO

OBJECTIVE: This study evaluated the in vitro and in situ effects of phytosphingosine (PHS) associated with tooth brushing on color stability, surface roughness, and microhardness of dental enamel. METHODS: Sixty-four specimens of bovine teeth (6 × 6 × 2 mm) were separated into 8 groups (n = 8): S + TB: PHS (spray) + tooth brushing; TB + S: tooth brushing + PHS (spray); I + TB: PHS (immersion) + tooth brushing; TB + I: tooth brushing + PHS (immersion); TB: tooth brushing; S: PHS spray; I: immersion in PHS solution, and Saliva: immersion in saliva. Tooth brushing simulation (Mavtec, Brazil) was performed (356 rpm on 3.8 cm area by the toothbrush - Soft Tek) for 1, 7, 15, and 30 days. PHS remained in contact with specimens for 15 min. The specimens were evaluated before and after tooth brushing for color alteration (Easy Shade, VITA), and surface roughness (Model SJ-201P Mitutoyo), and Knoop microhardness (HMV-2, Shimadzu Corporation). For the in situ analyses, 8 participants were recruited and received an intraoral device with 6 fragments of bovine enamel (6 × 6 × 2 mm). The properties evaluated were the same as those of the in vitro study. Participants were randomized following best results of in vitro tested protocols, for 15 days: TB, TB + S, I + TB. Data obtained by in vitro (two-way ANOVA, Tukey, p < .05) and in situ (one-way ANOVA, Tukey, p < .05) studies were analyzed. RESULTS: The in vitro study showed that greater color change was found after 30 days. The greatest differences in surface roughness occurred between the initial value and after 1 day. Regarding microhardness, the highest values occurred after 15 and 30 days, which showed similar results. The in situ study showed greater color changes for the TB and I + TB, and greater surface roughness changes for TB as well as a similar increase in microhardness for the PHS protocols, which were higher than TB. CONCLUSIONS: Phytosphingosine leads to an increase in performance regarding color stability, surface roughness, and microhardness when applied. In general, the application of PHS after brushing showed a positive impact on its performance. CLINICAL RELEVANCE: Phytosphingosine proved to be interesting for compound prevention formulations in the dentistry field.


Assuntos
Clareamento Dental , Escovação Dentária , Animais , Bovinos , Cor , Esmalte Dentário , Propriedades de Superfície , Dente , Humanos
2.
Clin Oral Investig ; 26(7): 4805-4816, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35301597

RESUMO

OBJECTIVES: The aim of this study was to evaluate the microhardness of caries-affected dentin and color stability of teeth restored after treatments with silver diamine fluoride (SDF) associated to potassium iodide (KI) and Biosilicate. MATERIAL AND METHODS: Different samples from bovine teeth were obtained. For color readings, 80 cavities (6 mm × 6 mm × 2 mm) were prepared, and for microhardness, teeth were flattened into dentine to obtain 40 samples. All samples were submitted to cariogenic challenge and separated in 4 groups, according to the treatment used: 12% SDF + KI; 38% SDF; Biosilicate and control (no treatment). Cavities were restored with resin-modified glass-ionomer cement (RMGIC, Vitremer, 3 M ESPE) or composite resin (CR, Z350, 3 M ESPE). After restoration, the samples were submitted to thermo-mechanical cycling (TMC) for 1,200,000 cycles. Color readings (EasyShade, Vita) were performed after restorations, after TMC, and 30 days after TMC. Knoop microhardness was evaluated on the planned samples before and after cariogenic challenge, after treatments, and after 30 days. Scanning electron microscopy (SEM) evaluated the dentine surface after treatments. Data were analyzed (ANOVA, Bonferroni, p < .05). RESULTS: The results showed a higher color alteration for RMGIC than CR. The time of analysis was significant (p < .05) for the 12% SDF + KI and control group. There was no difference (p < .05) in microhardness between groups. However, there was evidence of dentin remineralization after treatments. CONCLUSIONS: It was concluded that the samples treated with Biosilicate resulted in a color alteration similar to control. The treatments presented dentin remineralizing potential for microhardness, below the demineralization level, caused by the cariogenic challenge. CLINICAL RELEVANCE: Considering the remineralizing potential presented by Biosilicate, this agent is a promising alternative that overcomes the SDF adverse effects such as tooth staining.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Animais , Bovinos , Cerâmica , Cárie Dentária/terapia , Dentina , Fluoretos Tópicos/farmacologia , Cimentos de Ionômeros de Vidro , Compostos de Amônio Quaternário/farmacologia , Compostos de Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA