Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Vet Res ; 54(1): 26, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949480

RESUMO

Enterotoxigenic Escherichia coli (ETEC) colonizes the intestine of young pigs causing severe diarrhoea and consequently bringing high production costs. The rise of antibiotic selective pressure together with ongoing limitations on their use, demands new strategies to tackle this pathology. The pertinence of using bacteriophages as an alternative is being explored, and in this work, the efficacy of phage vB_EcoM_FJ1 (FJ1) in reducing the load of ETEC EC43-Ph (serotype O9:H9 expressing the enterotoxin STa and two adhesins F5 and F41) was assessed. Foreseeing the oral application on piglets, FJ1 was encapsulated on calcium carbonate and alginate microparticles, thus preventing phage release under adverse conditions of the simulated gastric fluid (pH 3.0) and allowing phage availability in simulated intestinal fluid (pH 6.5). A single dose of encapsulated FJ1, provided to IPEC-1 cultured cells (from intestinal epithelium of piglets) previously infected by EC43, provided bacterial reductions of about 99.9% after 6 h. Although bacteriophage-insensitive mutants (BIMs) have emerged from treatment, the consequent fitness costs associated with this new phenotype were demonstrated, comparatively to the originating strain. The higher competence of the pig complement system to decrease BIMs' viability, the lower level of colonization of IPEC-1 cells observed with these mutants, and the increased survival rates and health index recorded in infected Galleria mellonella larvae supported this observation. Most of all, FJ1 established a proof-of-concept of the efficiency of phages to fight against ETEC in piglet intestinal cells.


Assuntos
Bacteriófagos , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Suínos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Diarreia/microbiologia , Diarreia/veterinária , Linhagem Celular , Doenças dos Suínos/microbiologia
2.
Lasers Med Sci ; 38(1): 85, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920639

RESUMO

To evaluate the effects of Light-Emitting Diode (LED) irradiation on the expression of thermogenesis and lipogenesis-associated markers in adipose tissue and metabolic parameters of obese mice. Twenty-four male mice were divided into four groups: i) ST fed standard diet; ii) HCD fed hyperglycemic diet; iii) LED + I fed hyperglycemic diet and irradiated with LED in the interscapular region; iv) LED + A fed hyperglycemic diet and irradiated with LED in the abdominal region. The first phase of the study comprehended the induction of obesity for 12 weeks. Next, the animals were submitted to six irradiation sessions (days 1, 3, 7, 10, 14, and 21) using a 660-nm LED (5.77 J/cm2 at 48,1 mW/cm2). Anthropometric, biochemical, and histological parameters and the expression of thermogenesis and lipogenesis-associated markers were assessed in adipose tissue. There was diminished weight gain between the HCD and LED + A groups (ST: 0.37 ± 0.65; HCD: 3.10 ± 0.89; LED + I: -1.26 ± 0.83; LED + A: -2.07 ± 1.27 g; p < 0.018). There was a 33.3% and 23.8% reduction in epidydimal adipose tissue weight and a 25% and 10.7% in the visceral adiposity for the LED + I and LED + A groups, respectively, when compared with HCD. There was a decreased accumulation of fat droplets in adipose tissue in LED + A and LED + I groups. Additionally, LED irradiation was associated with increased mRNA expression of uncoupling protein 1 (UCP1) in the brown adipose tissue (ST: 2.27 ± 0.19; HCD: 1.54 ± 0.12; LED + I: 2.44 ± 0.22; p = 0.014) and decreased fatty acid synthetase (FAS) expression in epidydimal adipose tissue (ST: 0.79 ± 0.13; HCD: 1.59 ± 0.13; LED + A: 0.85 ± 0.04; p = 0.0008). LED treatment improved anthropometric parameters, possibly associated with the histological alterations, thermogenesis and lipogenesis markers in white adipose tissue, and expression modulation in brown adipose tissue.


Assuntos
Dieta Hiperlipídica , Lipogênese , Masculino , Animais , Camundongos , Lipogênese/genética , Camundongos Obesos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Termogênese , Camundongos Endogâmicos C57BL
3.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903642

RESUMO

Microalgae are capable of assimilating nutrients from wastewater (WW), producing clean water and biomass rich in bioactive compounds that need to be recovered from inside the microalgal cell. This work investigated subcritical water (SW) extraction to collect high-value compounds from the microalga Tetradesmus obliquus after treating poultry WW. The treatment efficiency was evaluated in terms of total Kjeldahl nitrogen (TKN), phosphate, chemical oxygen demand (COD) and metals. T. obliquus was able to remove 77% TKN, 50% phosphate, 84% COD, and metals (48-89%) within legislation values. SW extraction was performed at 170 °C and 30 bar for 10 min. SW allowed the extraction of total phenols (1.073 mg GAE/mL extract) and total flavonoids (0.111 mg CAT/mL extract) with high antioxidant activity (IC50 value, 7.18 µg/mL). The microalga was shown to be a source of organic compounds of commercial value (e.g., squalene). Finally, the SW conditions allowed the removal of pathogens and metals in the extracts and residues to values in accordance with legislation, assuring their safety for feed or agriculture applications.


Assuntos
Clorofíceas , Microalgas , Animais , Águas Residuárias , Biomassa , Aves Domésticas , Água , Metais , Tecnologia , Fosfatos , Nitrogênio
4.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745004

RESUMO

High-pressure pre-treatment followed by supercritical carbon dioxide (ScCO2) extraction (300 bar, 40 °C) was applied for the attainment of the lipophilic fraction of microalga Tetradesmus obliquus. The chemical profile of supercritical extracts of T. obliquus was analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionization (UHPLC-ESI-HRMS). Moreover, the impact of ScCO2 on the microbiological and metal profile of the biomass was monitored. The application of the pre-treatment increased the extraction yield approximately three-fold compared to the control. In the obtained extracts (control and pre-treated extracts), the identified components belonged to triacylglyceroles, fatty acid derivatives, diacylglycerophosphocholines and diacylglycerophosphoserines, pigments, terpenes, and steroids. Triacylglycerols (65%) were the most dominant group of compounds in the control extract. The pre-treatment decreased the percentage of triacylglycerols to 2%, while the abundance of fatty acid derivatives was significantly increased (82%). In addition, the pre-treatment led to an increase in the percentages of carotenoids, terpenoids, and steroids. Furthermore, it was determined that ScCO2 extraction reduced the number of microorganisms in the biomass. Considering its microbiological and metal profiles, the biomass after ScCO2 can potentially be used as a safe and important source of organic compounds.


Assuntos
Clorofíceas , Cromatografia com Fluido Supercrítico , Microalgas , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Ácidos Graxos , Extratos Vegetais/farmacologia , Triglicerídeos
5.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408674

RESUMO

Microalgae have almost unlimited applications due to their versatility and robustness to grow in different environmental conditions, their biodiversity and variety of valuable bioactive compounds. Wastewater can be used as a low-cost and readily available medium for microalgae, while the latter removes the pollutants to produce clean water. Nevertheless, since the most valuable metabolites are mainly located inside the microalga cell, their release implies rupturing the cell wall. In this study, Tetradesmus obliquus grown in 5% piggery effluent was disrupted using high-pressure homogenization (HPH). Effects of HPH pressure (100, 300, and 600 bar) and cycles (1, 2 and 3) were tested on the membrane integrity and evaluated using flow cytometry and microscopy. In addition, wheat seed germination trials were carried out using the biomass at different conditions. Increased HPH pressure or number of cycles led to more cell disruption (75% at 600 bar and 3 cycles). However, the highest increase in wheat germination and growth (40-45%) was observed at the lowest pressure (100 bar), where only 46% of the microalga cells were permeabilised, but not disrupted. Non-treated T. obliquus cultures also revealed an enhancing effect on root and shoot length (up to 40%). The filtrate of the initial culture also promoted shoot development compared to water (21%), reinforcing the full use of all the process fractions. Thus, piggery wastewater can be used to produce microalgae biomass, and mild HPH conditions can promote cell permeabilization to release sufficient amounts of bioactive compounds with the ability to enhance plant germination and growth, converting an economic and environmental concern into environmentally sustainable applications.


Assuntos
Clorofíceas , Microalgas , Biomassa , Germinação , Microalgas/metabolismo , Sementes/química , Águas Residuárias/química , Água/metabolismo
6.
BMC Womens Health ; 21(1): 174, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892709

RESUMO

BACKGROUND: Human papillomavirus (HPV) and Trichomonas vaginalis (TV) infections are the most common sexually transmitted infections (STIs) globally. The latter has contributed to a variety of adverse outcomes for both sexes. Moreover, in Brazil, epidemiological studies on patients with STIs are limited. Therefore, this study aimed to determine the prevalence of TV and its association with HPV in women undergoing cervical cancer screening. METHODS: Women with a normal cervix were recruited from a community-based cervical cancer screening program. Gynecological examinations were conducted, and questionnaires were provided. Vaginal canal and uterine cervix samples were collected for cytological examinations (reported using the 2001 Bethesda System) and tested for the presence of TV and HPV DNA. RESULTS: In total, 562 women who attended public primary healthcare were included in the study. The T. vaginalis was present in 19.0% (107) and HPV DNA was present in 46.8% (263) of women. Among the women of TV 73.8% (79) had a co-infection with HPV (p = 0.001). CONCLUSIONS: We concluded that a TV infection is associated with an HPV infection of the cervix as well as with the cervical cytological abnormalities. Further studies could reveal the mechanisms by which these two organisms interact at the cellular level, with control for shared behavioral risk factors.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Trichomonas vaginalis , Neoplasias do Colo do Útero , Brasil , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/epidemiologia , Prevalência , Fatores de Risco
7.
J Cell Physiol ; 235(6): 4989-4998, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31709540

RESUMO

The existence of cancer stem cells is debatable in numerous solid tumors, yet in leukemia, there is compelling evidence of this cell population. Leukemic stem cells (LSCs) are altered cells in which accumulating genetic and/or epigenetic alterations occur, resulting in the transition between the normal, preleukemic, and leukemic status. These cells do not follow the normal differentiation program; they are arrested in a primitive state but with high proliferation potential, generating undifferentiated blast accumulation and a lack of a mature cell population. The identification of LSCs might guide stem cell biology research and provide key points of distinction between these cells and their normal counterparts. The identification and characterization of the main features of LSCs can be useful as tools for diagnosis and treatment. In this context, the aim of the present review was to connect immunophenotype data in the main types of leukemia to further guide technical improvements.


Assuntos
Imunofenotipagem/tendências , Leucemia/diagnóstico , Leucemia/imunologia , Células-Tronco Neoplásicas/imunologia , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/uso terapêutico , Diferenciação Celular/imunologia , Citometria de Fluxo , Humanos , Leucemia/patologia , Leucemia/terapia , Células-Tronco Neoplásicas/patologia , Prognóstico
8.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463964

RESUMO

Acinetobacter baumannii is an important pathogen causative of health care-associated infections and is able to rapidly develop resistance to all known antibiotics, including colistin. As an alternative therapeutic agent, we have isolated a novel myovirus (vB_AbaM_B9) which specifically infects and makes lysis from without in strains of the K45 and K30 capsule types, respectively. Phage B9 has a genome of 93,641 bp and encodes 167 predicted proteins, of which 29 were identified by mass spectrometry. This phage holds a capsule depolymerase (B9gp69) able to digest extracted exopolysaccharides of both K30 and K45 strains and remains active in a wide range of pH values (5 to 9), ionic strengths (0 to 500 mM), and temperatures (20 to 80°C). B9gp69 was demonstrated to be nontoxic in a cell line model of the human lung and to make the K45 strain fully susceptible to serum killing in vitro Contrary to the case with phage, no resistance development was observed by bacteria targeted with the B9gp69. Therefore, capsular depolymerases may represent attractive antimicrobial agents against A. baumannii infections.IMPORTANCE Currently, phage therapy has revived interest for controlling hard-to-treat bacterial infections. Acinetobacter baumannii is an emerging Gram-negative pathogen able to cause a variety of nosocomial infections. Additionally, this species is becoming more resistant to several classes of antibiotics. Here we describe the isolation of a novel lytic myophage B9 and its recombinant depolymerase. While the phage can be a promising alternative antibacterial agent, its success in the market will ultimately depend on new regulatory frameworks and general public acceptance. We therefore characterized the phage-encoded depolymerase, which is a natural enzyme that can be more easily managed and used. To our knowledge, the therapeutic potential of phage depolymerase against A. baumannii is still unknown. We show for the first time that the K45 capsule type is an important virulence factor of A. baumannii and that capsule removal via the recombinant depolymerase activity helps the host immune system to combat the bacterial infection.


Assuntos
Glicosídeo Hidrolases/metabolismo , Myoviridae/genética , Myoviridae/metabolismo , Acinetobacter baumannii/virologia , Cápsulas Bacterianas/fisiologia , Cápsulas Bacterianas/virologia , Bacteriófagos/genética , DNA Viral/genética , Genoma Viral , Glicosídeo Hidrolases/genética , Humanos , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Proteínas Virais/metabolismo
9.
Purinergic Signal ; 16(1): 1-15, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863258

RESUMO

Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.


Assuntos
Doenças Hematológicas/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Humanos
10.
Molecules ; 25(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033149

RESUMO

Microalgae are microorganisms with the capacity to contribute to the sustainable and healthy food production, in addition to wastewater treatment. The subject of this work was to determine the potential of Scenedesmus obliquus microalga grown in brewery wastewater to act as a plant biostimulant. The germination index of watercress seeds, as well as the auxin-like activity in mung bean and cucumber, and in the cytokinin-like activity in cucumber bioassays were used to evaluate the biostimulant potential. Several biomass processes were studied, such as centrifugation, ultrasonication and enzymatic hydrolysis, as well as the final concentration of microalgal extracts to determine their influence in the biostimulant activity of the Scenedesmus biomass. The results showed an increase of 40% on the germination index when using the biomass at 0.1 g/L, without any pre-treatment. For auxin-like activity, the best results (up to 60% with respect to control) were obtained at 0.5 g/L of biomass extract, after a combination of cell disruption, enzymatic hydrolysis and centrifugation. For cytokinin-like activity, the best results (up to 187.5% with respect to control) were achieved without cell disruption, after enzymatic hydrolysis and centrifugation at a biomass extract concentration of 2 g/L.


Assuntos
Extratos Celulares/farmacologia , Cucumis sativus/crescimento & desenvolvimento , Nasturtium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Scenedesmus/metabolismo , Vigna/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Microalgas/metabolismo , Águas Residuárias/análise
11.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227554

RESUMO

Acinetobacter baumannii is emerging as a major nosocomial pathogen in intensive care units. The bacterial capsules are considered major virulence factors, and the particular A. baumannii capsular type K2 has been associated with high antibiotic resistance. In this study, we identified a K2 capsule-specific depolymerase in a bacteriophage tail spike C terminus, a fragment that was heterologously expressed, and its antivirulence properties were assessed by in vivo experiments. The K2 depolymerase is active under a broad range of environmental conditions and is highly thermostable, with a melting point (Tm ) at 67°C. In the caterpillar larva model, the K2 depolymerase protects larvae from bacterial infections, using either pretreatments or with single-enzyme injection after bacterial challenge, in a dose-dependent manner. In a mouse sepsis model, a single K2 depolymerase intraperitoneal injection of 50 µg is able to protect 60% of mice from an otherwise deadly infection, with a significant reduction in the proinflammatory cytokine profile. We showed that the enzyme makes bacterial cells fully susceptible to the host complement system killing effect. Moreover, the K2 depolymerase is highly refractory to resistance development, which makes these bacteriophage-derived capsular depolymerases useful antivirulence agents against multidrug-resistant A. baumannii infections.IMPORTANCEAcinetobacter baumannii is an important nosocomial pathogen resistant to many, and sometimes all, antibiotics. The A. baumannii K2 capsular type has been associated with elevated antibiotic resistance. The capsular depolymerase characterized here fits the new trend of alternative antibacterial agents needed against multidrug-resistant pathogens. They are highly specific, stable, and refractory to resistance, as they do not kill bacteria per se; instead, they remove bacterial surface polysaccharides, which diminish the bacterial virulence and expose them to the host immune system.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Mariposas/microbiologia , Sepse/microbiologia , Acinetobacter baumannii/genética , Animais , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Larva/crescimento & desenvolvimento , Larva/microbiologia , Camundongos , Mariposas/crescimento & desenvolvimento
12.
Environ Res ; 164: 32-38, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29475106

RESUMO

The ability of microalgae to grow in nutrient-rich environments and to accumulate nutrients from wastewaters (WW) makes them attractive for the sustainable and low-cost treatment of WW. The valuable biomass produced can be further used for the generation of bioenergy, animal feed, fertilizers, and biopolymers, among others. In this study, Scenedesmus obliquus was able to remove nutrients from different wastewaters (poultry, swine and cattle breeding, brewery and dairy industries, and urban) with removal ranges of 95-100% for nitrogen, 63-99% for phosphorus and 48-70% for chemical oxygen demand. The biomass productivity using wastewaters was higher (except for poultry) than in synthetic medium (Bristol), the highest value being obtained in brewery wastewater (1025 mg/(L.day) of freeze-dried biomass). The produced biomass contained 31-53% of proteins, 12-36% of sugars and 8-23% of lipids, regardless of the type of wastewater. The potential of the produced Scenedesmus obliquus biomass for the generation of BioH2 through batch dark fermentation processes with Enterobacter aerogenes was evaluated. The obtained yields ranged, in mL H2/g Volatile Solids (VS), from 50.1 for biomass from anaerobically digested cattle WW to 390 for swine WW, whereas the yield with biomass cultivated in Bristol medium was 57.6 mL H2/gVS.


Assuntos
Biocombustíveis , Biotecnologia , Microalgas , Scenedesmus , Animais , Biomassa , Bovinos , Nitrogênio , Fósforo , Aves Domésticas , Suínos , Águas Residuárias
13.
Environ Microbiol ; 19(12): 5060-5077, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29076652

RESUMO

Bacteriophages are ubiquitous in nature and represent a vast repository of genetic diversity, which is driven by the endless coevolution cycle with a diversified group of bacterial hosts. Studying phage-host interactions is important to gain novel insights into their dynamic adaptation. In this study, we isolated 12 phages infecting species of the Acinetobacter baumannii-Acinetobacter calcoaceticus complex which exhibited a narrow host range and similar morphological features (podoviruses with short tails of 9-12 nm and isometric heads of 50-60 nm). Notably, the alignment of the newly sequenced phage genomes (40-41 kb of DNA length) and all Acinetobacter podoviruses deposited in Genbank has shown high synteny, regardless of the date and source of isolation that spans from America to Europe and Asia. Interestingly, the C-terminal pectate lyase domain of these phage tail fibres is often the only difference found among these viral genomes, demonstrating a very specific genomic variation during the course of their evolution. We proved that the pectate lyase domain is responsible for phage depolymerase activity and binding to specific Acinetobacter bacterial capsules. We discuss how this mechanism of phage-host co-evolution impacts the tail specificity apparatus of Acinetobacter podoviruses.


Assuntos
Acinetobacter baumannii/virologia , Acinetobacter calcoaceticus/virologia , Especificidade de Hospedeiro/fisiologia , Podoviridae/metabolismo , Poligalacturonase/metabolismo , Polissacarídeo-Liases/metabolismo , Ásia , Sequência de Bases , Europa (Continente) , Genoma Viral/genética , Podoviridae/classificação , Podoviridae/genética , Domínios Proteicos/fisiologia , Vírion/genética
17.
Stem Cells ; 32(11): 2949-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24964894

RESUMO

There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling.


Assuntos
Células da Medula Óssea/metabolismo , Linhagem da Célula , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Óxido Nítrico/metabolismo , Animais , Proliferação de Células/fisiologia , Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
18.
J Cell Biochem ; 115(1): 42-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24038146

RESUMO

Myeloid differentiation is a complex process whereby mature granulocytes or monocytes/macrophages are derived from a common myeloid progenitor through the coordinated action of hematopoietic cytokines. In this study, we explored the role of the Ca(2+)i signaling transduction pathway in the commitment of hematopoietic stem/progenitor cells to either the monocytic or granulocytic lineage in response to macrophage colony-stimulating factor (M-CSF) and granulocyte colony-stimulating factor (G-CSF). M-CSF and G-CSF induce cell expansion and monocyte or granulocyte differentiation, respectively, without affecting the percentage of hematopoietic progenitor cells. Colony-forming units (CFUs) and flow cytometry demonstrated the involvement of phospholipase Cγ (PLCγ) and protein kinase C (PKC) in monocyte/granulocyte commitment. In addition, using flow cytometry and RNA interference, we identified PLCγ2 as the PLCγ isoform that participates in this cell expansion and differentiation. Differences in signaling elicited by M-CSF and G-CSF were observed. The M-CSF-related effects were associated with the activation of ERK1/2 and nuclear factor of activated T-cells (NFAT); the inhibition of both molecules reduced the number of colonies in a CFU assay. In contrast, using flow cytometry and confocal evaluation, we demonstrated that G-CSF activated Jak-1 and STAT-3. Additionally, the effects induced by G-CSF were also related with the participation of Ca(2+) calmodulin kinase II and the transcription factor PU.1. STAT-3 activation and the increase of PU.1 expression were sensitive to PLC inhibition by U73122. These data show that PLCγ2 and PKC are important upstream signals that regulate myelopoiesis through cytokines, and differences in M-CSF and G-CSF downstream signaling were identified.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Animais , Sinalização do Cálcio , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Estrenos/farmacologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirrolidinonas/farmacologia , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Transativadores/metabolismo
19.
Sci Rep ; 14(1): 25037, 2024 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443556

RESUMO

Pollination is a key ecosystem service crucial for supporting agricultural production, economic growth, social inclusion, and environmental protection. Understanding the economic value of pollination and its impact on human health and nutrition is essential for effective pollinator conservation and management. This study evaluates the economic and nutritional value of pollination services in Nepal and quantifies historic changes in pollinator reliance. Using public data on agricultural production and commodity prices, in combination with published nutritional composition values, we employ the dependency-ratio method to quantify economic and nutritional value across different regions of the country and through time. We conservatively estimate the annual economic value of pollination services in Nepal at US $477 million, representing 9% of total agricultural revenue. Pollinator-dependent crops, particularly fruits and vegetables are the source of essential nutrients; 40% of plant-based vitamin A and 14% of vitamin C are directly attributable to insect pollination. The cultivated area of these pollinator-dependent crops has increased by 91% in Nepal over 20 years - 3.7 times faster than equivalent increases in non-pollinator-dependent crops. The decline in wild pollinators during the same time period poses a threat, leading to potential pollination deficits and crop losses. Our study underscores the importance of conserving and managing pollinators to ensure sustainable agriculture, food security, and nutrition. Targeted efforts, including policy interventions and conservation strategies, are needed to safeguard pollinator populations and enhance pollination services.


Assuntos
Produtos Agrícolas , Valor Nutritivo , Polinização , Nepal , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/economia , Agricultura/economia , Agricultura/métodos , Humanos , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema
20.
Environ Sci Pollut Res Int ; 31(37): 49560-49573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080174

RESUMO

Anaerobic and membrane technologies are a promising combination to decrease the energy consumption associated with wastewater treatment, allowing the recovery of resources: organic matter as biomethane, nutrient assimilation by microalgae and reclaimed water. In this study, domestic wastewater was treated using a combination of an upflow anaerobic sludge blanket sludge reactor (UASB) and a membrane photobioreactor (MPBR). The outdoor facilities were operated continuously for three months under unfavourable environmental conditions such as lack of temperature control, winter season with lower solar irradiation and lower daylight hours which was a challenge for the present work, not previously described. The energetic valorisation of the organic matter present in the wastewater by biomethane produced in the UASB would contribute to reducing overall facilities' energy requirements. The ultrafiltration (UF) membrane facilitated the harvesting of biomass, operating at 10 L·h-1·m-2 during the experimental period. Although the main contribution to fouling was irreversible, chemical cleanings were not necessary due to effective fouling control, which prevented the final TMP from exceeding 25 kPa. In addition, microalgae-bacterial consortium developed without prior inoculation were harvested from the MPBR using membrane assistance. The obtained biomass was also successfully tested as a biostimulant for corn germination/growth, as well as a biopesticide against Rhizoctonia solani and Fusarium oxysporum.


Assuntos
Fotobiorreatores , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Microalgas , Biomassa , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA